S32K1xx Data Sheet

Notes

- Supports S32K116, S32K118, S32K142, S32K142W, S32K144, S32K144W, S32K146, and S32K148
 - Technical information for S32K142W and S32K144W device families is preliminary until these devices achieve qualification
- The following two attachments are available with the Datasheet:
 - S32K1xx_Orderable_Part_Number_ List.xlsx
 - S32K1xx_Power_Modes_Configuration.xlsx

Key Features

- Operating characteristics
 - Voltage range: 2.7 V to 5.5 V
 - Ambient temperature range: -40 °C to 105 °C for HSRUN mode, -40 °C to 150 °C for RUN mode
- ArmTM Cortex-M4F/M0+ core, 32-bit CPU
 - Supports up to 112 MHz frequency (HSRUN mode) with 1.25 Dhrystone MIPS per MHz
 - Arm Core based on the Armv7 Architecture and Thumb®-2 ISA
 - Integrated Digital Signal Processor (DSP)
 - Configurable Nested Vectored Interrupt Controller (NVIC)
 - Single Precision Floating Point Unit (FPU)
- Clock interfaces
 - 4 40 MHz fast external oscillator (SOSC) with up to 50 MHz DC external square input clock in external clock mode
 - 48 MHz Fast Internal RC oscillator (FIRC)
 - 8 MHz Slow Internal RC oscillator (SIRC)
 - 128 kHz Low Power Oscillator (LPO)
 - Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)
 - Up to 20 MHz TCLK and 25 MHz SWD_CLK
 - 32 kHz Real Time Counter external clock (RTC_CLKIN)

S32K1XX

- Power management
 - Low-power Arm Cortex-M4F/M0+ core with excellent energy efficiency
 - Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, STOP, VLPR, and VLPS. Note: CSEc (Security) or EEPROM writes/ erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - Clock gating and low power operation supported on specific peripherals.
- Memory and memory interfaces
 - Up to 2 MB program flash memory with ECC
 - 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - Up to 256 KB SRAM with ECC
 - Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation
 - Up to 4 KB Code cache to minimize performance impact of memory access latencies
 - QuadSPI with HyperBus[™] support
- Mixed-signal analog
 - Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module
 - One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC)
- Debug functionality
 - Serial Wire JTAG Debug Port (SWJ-DP) combines
 - Debug Watchpoint and Trace (DWT)
 - Instrumentation Trace Macrocell (ITM)
 - Test Port Interface Unit (TPIU)
 - Flash Patch and Breakpoint (FPB) Unit
- Human-machine interface (HMI)
 - Up to 156 GPIO pins with interrupt functionality
 - Non-Maskable Interrupt (NMI)

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Table of Contents

1	Bloc	Block diagram				
2	Feat	ure comp	parison5			
3	Orde	ering info	ormation			
	3.1	Selectin	ng orderable part number8			
	3.2	Orderin	g information9			
4	Gen	eral				
	4.1	Absolut	te maximum ratings10			
	4.2	Voltage	and current operating requirements12			
	4.3	Therma	l operating characteristics13			
	4.4	Power a	and ground pins15			
	4.5	LVR, L	VD and POR operating requirements17			
	4.6	Power r	node transition operating behaviors			
	4.7	Power c	consumption			
	4.8	ESD an	d latch-up protection characteristics27			
	4.9	EMC ra	diated emissions operating behaviors			
5	I/O I	paramete	rs			
	5.1	AC elec	trical characteristics			
	5.2	General	AC specifications			
	5.3	DC elec	etrical specifications at 3.3 V Range			
	5.4	DC elec	ctrical specifications at 5.0 V Range			
	5.5	AC elec	ctrical specifications at 3.3 V range			
	5.6	AC elec	etrical specifications at 5 V range			
	5.7	Standar	d input pin capacitance35			
	5.8	Device	clock specifications			
6	Perij	pheral op	berating requirements and behaviors			
	6.1	System	modules			
	6.2	Clock in	nterface modules			
		6.2.1	External System Oscillator electrical specifications36			
		6.2.2	External System Oscillator frequency specifications . 38			
		6.2.3	System Clock Generation (SCG) specifications40			
			6.2.3.1 Fast internal RC Oscillator (FIRC)			
			electrical specifications			
			6.2.3.2 Slow internal RC oscillator (SIRC)			
			electrical specifications			
		6.2.4	Low Power Oscillator (LPO) electrical specifications			

		6.2.5	SPLL elect	rical specifications	.42
	6.3	Memor	y and memo	ry interfaces	42
		6.3.1	Flash mem	ory module (FTFC/FTFM) electrical	
			specificatio	ns	.42
			6.3.1.1	Flash timing specifications —	
				commands	42
			6.3.1.2	Reliability specifications	49
		6.3.2	QuadSPI A	C specifications	.49
	6.4	Analog	modules		54
		6.4.1	ADC electr	ical specifications	54
			6.4.1.1	12-bit ADC operating conditions	54
			6.4.1.2	12-bit ADC electrical characteristics	57
		6.4.2	CMP with	8-bit DAC electrical specifications	59
	6.5	Commu	unication mo	dules	65
		6.5.1	LPUART e	lectrical specifications	65
		6.5.2	LPSPI elec	trical specifications	65
		6.5.3	LPI2C elec	trical specifications	71
		6.5.4	FlexCAN e	lectical specifications	.72
		6.5.5	SAI electric	cal specifications	72
		6.5.6	Ethernet A	C specifications	74
		6.5.7	Clockout fr	equency	77
	6.6	Debug	modules		77
		6.6.1	SWD electr	rical specofications	77
		6.6.2	Trace elect	rical specifications	79
		6.6.3	JTAG elect	rical specifications	80
7	The	mal attr	ibutes		84
	7.1	Descrip	otion		.84
	7.2	Therma	al characteris	tics	84
	7.3	Genera	l notes for sp	pecifications at maximum junction	
		tempera	ature		89
8	Dim	ensions.			.90
	8.1	Obtaini	ng package	dimensions	90
9	Pino	uts			91
	9.1	Packag	e pinouts and	d signal descriptions	.91
10	Revi	ision His	story		.91

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x, S32K14xW and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

Figure 1. High-level architecture diagram for the S32K14x and S32K14xW family

Feature comparison

2 Feature comparison

The following figure summarizes the memory, peripherals and packaging options for the S32K1xx and S32K14xW devices. All devices which share a common package are pinto-pin compatible.

NOTE

Availability of peripherals depends on the pin availability in a particular package. For more information see *IO Signal*

Feature comparison

Description Input Multiplexing sheet(s) attached with Reference Manual.

Single supply voltage 2.7 - 5.5 V 2.7 - 5.5 V Ambient Operation Temperature (Ta) -40-C to -105-C / +125-C -40-C to -105-C / +125-C Flash 128 KB 256 KB 512 KB 1 MB 2 MB ² System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB 128 KB 256 KB 128 KB 256 KB 52 KB 4 KB Cache o 4 KB 4 KB 4 KB 2 KB 2 KB 4 KB 2 KB 2 KB 4 KB 2 KB 4 KB 2 KB 2 KB 4 KB 2 KB 2 KB 2 KB 2 KB 2 KB 4 KB 2 KB<				K11x		S32	K14x	
Fequency 48 MH2 00 MH2 (PLN mode) or 112 MH2 (HSRUN mode) or 113 MH2 (HSRUN mode) or 113 MH2 (HSRUN mode) or 114 MH2 (HSRUN mode) or 115 MH2 (HSRUN mode) or 112 MH2 (HSRU mode) or 0 or		Parameter	K116	K118	K142	K144	K146	K148
Image: Process Service Engine (OSEC) ¹ · · Cryptographic Service Engine (OSEC) ¹ · ix ix ix Chychol Constant Service Engine (OSEC) ¹ · ix ix ix Chychol Constant Service Constant		Core	Arr	n [®] Cortex™-M0+		Arr	n [®] Cortex™-M4F	
Chysiographic Services Engine (CSEq) ¹ • • Chysiographic Services Engine (CSEq) ¹ 1x 1x 180 26502 capable up to ASIL-B up to 12 MHz (HSRLW) Crossbar • • DMA • • External Watchdog Monitor (EWM) • • Marcory Potection Unit (MPU) • • Plant 128 KB 27 - 5 5 V · Stripter Stripter Marcory Engine • • • Plant 128 KB 256 KB 512 KB 114 KB 2 MB2 <		Frequency	48 MHz		80 MH	z (RUN mode) or	112 MHz (HSRUN 1	mode)1
CHC module 1x 1x 1x B0 22662 capable up to ASILB capable up to ASILB capable up to ASILB Periphenal speed up to 48 Mi2 up to 172 Mi7 (HSRUN) DMA • • • DMA • • • DMA • • • Marco P Detection Unit (MPU) • • • HSRUN model • • • • Number OIOS up to 43 up to 58 up to 128 up to 158 up to 158 Single supply voltage 2.7 - 5.5 V 2.7 - 5.5 V -40°C to +105°C / +125°C -40°C to +105°C / +125°C Antibert Operation Tomperature (Ta) -40°C to +105°C / +125°C -40°C to +105°C / +125°C -40°C to +105°C / +125°C System TAM (including FlaveRAM and MTB) 17 KB 25 KB 25 KB 25 KB 26 KB System TAM (including FlaveRAM and MTB) 17 KB 25 KB 26 KB 26 KB -40°C to +105°C / +125°C PeripharMa (isto available as system RAM) 2 KB (up to 2 KB D-Flaan)		IEEE-754 FPU		c			•	
Bit Capable up to ASIL-B Capable up to ASIL-B Capable up to ASIL-B Peripheral speed up to 112 ML2 (HSRUN) • • Crossbar • • • • DAA • • • • External Watchdog Montor (EWM) • • • • Manory Protection Unit (MPU) • • • • Watchdog 0 • • • • Watchdog 0 • • • • • Watchdog 0 • <td< td=""><td></td><td>Cryptographic Services Engine (CSEc)¹</td><td colspan="2">•</td><td></td><td colspan="3">•</td></td<>		Cryptographic Services Engine (CSEc) ¹	•			•		
Page up to 48 MHz up to 112 MHz (HSRUN) Clossbar ● <td></td> <td>CRC module</td> <td>1</td> <td>x</td> <td></td> <td>1</td> <td>x</td> <td></td>		CRC module	1	x		1	x	
Operation Operating Operating <thoperating< th=""> <thoperating< th=""> <tho< td=""><td></td><td>ISO 26262</td><td>capable up</td><td>o to ASIL-B</td><td></td><td>capable u</td><td>o to ASIL-B</td><td></td></tho<></thoperating<></thoperating<>		ISO 26262	capable up	o to ASIL-B		capable u	o to ASIL-B	
BMA ● ● DMA ● ● Memory Protection Unit (MPU) ● ● Memory Protection Unit (MPU) ● ● HSC CAU ● ● Validog 1x 1x Low power mode ● ● Number of I/OS up to 43 up to 58 up to 158 Single supply voltage 2.7 - 5.5 V 2.7 - 5.5 V 2.7 - 5.5 V Ambert Operation Temperature (Ta) -40-0 to 1056/-1125-C -40-0 to 1056/-125-C -40-0 to 1056/-125-C Flash 128 KB 256 KB 32 KB 64 KB 128 KB 256 KB System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB EDROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB 500 totol 0 - 4 KB Ederhal memory interface 0 0 1x		Peripheral speed	up to 4	l8 MHz		up to 112 M	Hz (HSRUN)	
Bit External Watchdog Monitor (EWM) ● Harroy Protection Lnit (MPU) ● ● HiRC CMU ● ● Watchdog 1x 1x 1x Low power modes ● ● ● HSRUN mode! 0 ● ● Mumber of I/Os up to 43 up to 58 up to 89 up to 128 Up		Crossbar		•			•	
Image: Fire CMU - - - Fire CMU • -	E	DMA		•			•	
Image: Fire CMU - - - Fire CMU • -	ste	External Watchdog Monitor (EWM)		0			•	
Watchdog 1x 1x 1x Low power modes • <td>sy</td> <td>Memory Protection Unit (MPU)</td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td>	sy	Memory Protection Unit (MPU)		•			•	
Low power modes • • HSRUM mode ¹ 0 • • Number UloS up to 33 up to 58 up to 59 up to 128 up to 158 Single supply voltage 2.7 - 5.5 V Ambient Operation Temperature (Ta) -40C to -105*C / +125*C -40°C to +105*C / +125*C -40°C		FIRC CMU		•			0	
HSRUN mode! o up to 83 up to 58 up to 89 up to 128 up to 128 <thup 12<="" td="" to=""><td></td><td>Watchdog</td><td>1</td><td>x</td><td></td><td>1</td><td>x</td><td></td></thup>		Watchdog	1	x		1	x	
Inclustry Up to 43 Up to 58 Up to 89 Up to 128 U		Low power modes		•			•	
Single supply voltage 2.7 - 5.5 V 2.7 - 5.5 V Ambient Operation Temperature (Ta) -40-C to -105-C / +125-C -40-C to -105-C / +125-C Flash 128 KB 256 KB 512 KB 1 MB 2 MB ² System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB 128 KB 256 KB 52 KB 32 KB 64 KB 128 KB 256 KB 256 KB 128 KB 256 KB 128 KB 256 KB 256 KB 128 KB 256 KB 4 KB 256 KB 4 KB 256 KB 256 KB 4 KB 256 KB 256 KB 4 KB 256 KB 256 KB 4 KB 266 KB 256 KB 256 KB 256 KB 4 KB 266 KB 256 KB 4 KB 266 KB 256 KB 256 KB 266 KB 266 KB 266 KB 266 KB 512 KB 74 KB 266 KB <		HSRUN mode ¹		0			•	
Ambient Operation Temperature (Ta) -40-C to +105-C / +125-C -40-C to +105-C / +125-C Flash 128 KB 256 KB 512 KB 1 MB 2 MB ² System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB FlexRAM (also available as system RAM) 2 KB 4 KB 4 KB 4 KB Cache o 4 KB 4 KB 0 4 KB EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot Low Power Interrupt Timer (LPTT) 1x 1x HyperBust FlexTime (16-bit countelp S channels 2x (16) 4x (32) 6x (48) 8x (64) Low Power Timer (LPTTR) 1x 1x 1x 1x 1x FleatTime (16-bit countelp S channels 2x (16) 1x (64) 1x (73) 1x (81) Comparator with 8-bit DAC 1x 1x 1x 1x 1x		Number of I/Os	up to 43	up to 58	upt	to 89	up to 128	up to 156
Flash 128 KB 256 KB 256 KB 512 KB 1 MB 2 MB ² System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB FlexRAM (also available as system RAM) 2 KB 4 KB 4 KB 4 KB Cache 0 4 KB 4 KB 4 KB 4 KB EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See foothol External memory interface 0 0 QuadSPI in HyperBush 1x FlexTimer (16-bit counter) 8 channels 2x (16) 4x (32) 6x (48) 8x (64) Low Power Timer (LPTIR) 1x 1x 1x 1x Programmable Delay Block (PDB) 1x 2x 1x (81) 1x (81) 12-bit SAR ADC (1 Maps each) 1x (43) 1x (45) 1x (64) 1x (31) 1x (81) 10/100 Mbys IEEE-1588 Etherent MAC 0 0 2x (Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V	
Flash 128 KB 256 KB 256 KB 512 KB 1 MB 2 MB ² Bystem FAM (including FiexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB Bystem FAM (including FiexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB Gene o 4 KB 4 KB 4 KB 4 KB 4 KB EEPROM emulated by FiexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot External memory interface o o QuadSPI in HyperBusit 1x 1x FlexRMr (16-bit counter) B channels 2x (16) 4x (32) 6x (48) 8x (64) Low Power Timer (LPTMR) 1x 1x 1x 1x Pogrammable Delay Block (PDB) 1x 2x 1x 1x Trigger mux (TRGMUX) 1x (43) 1x (16) 2x (16) 2x (24) 2x (32) Owpower UART/LIN (LPUART) 1x (13) 1x (16) 2x (16) 2x (32) 3x 3x 3x Low Power UART		Ambient Operation Temperature (Ta)	-40°C to +105	5°C / +125°C		-40°C to +10	5°C / +125°C	
System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB FlexRAM (also available as system FIAM) 2 KB o 4 KB 4 KB Cache o 4 KB 4 KB 4 KB EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See foothol External memory interface o o 0 UadSP1 in the present of the present		Flash			256 KB			2 MB ²
System RAM (including FlexRAM and MTB) 17 KB 25 KB 32 KB 64 KB 128 KB 256 KB FlexRAM (also available as system FIAM) 2 KB o 4 KB 4 KB Cache o 4 KB 4 KB 4 KB EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See foothol External memory interface o o 0 UadSP1 in the present of the present		Error Correcting Code (ECC)		•			•	
FlexRAM (also available as system RAM) 2 KB 4 KB Cache o 4 KB E2PROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot E2PROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot External memory interface o o QuadSP1 in GuadSP1 in Eaternal memory interface o o QuadSP1 in GuadSP1 in Ital 1x 1x ix FlexTimer (16-bit counter) 8 channels 2x (16) 4x (32) 6x (48) 8x (64) Low Power Timer (LPTMR) 1x 1x 1x 1x 1x Programmable Delay Block (PDB) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Mps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (32) Comparator with 8-bit DAC 1x 1x 1x 1x 1x Low Power UART/LIN (LPUART) 2x 2x 3x 2x 3x Low Power UART/LIN (- · ·	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB
EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot MypeRus ¹ External memory interface o o QuadSPI in MypeRus ¹ Low Power Interrupt Timer (LPIT) 1x	Ž		2 KB					
EEPROM emulated by FlexRAM ¹ 2 KB (up to 32 KB D-Flash) 4 KB (up to 64 KB D-Flash) See footnot MypeRus ¹ External memory interface o o QuadSPI in MypeRus ¹ Low Power Interrupt Timer (LPIT) 1x	emo		0		4 KB			
Letternal filtering of litering of the sector HyperBush Image: Figure of the sector of the sec	Σ	EEPROM emulated by FlexRAM ¹	2 KB (up to 32 KB D-Flash)		4 KB (up to 64 KB D-Flash)			See footnote 3
FlexTimer (16-bit counter) 8 channels 2x (16) 4x (32) 6x (48) 8x (64) Low Power Timer (LPTMR) 1x		External memory interface		0		• C		QuadSPI incl. HyperBus™
Low Power Timer (LPTMR) 1x 1x Real Time Counter (RTC) 1x 1x Programmable Delay Block (PDB) 1x 2x Trigger mux (TRGMUX) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Msps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (32) Comparator with 8-bit DAC 1x 1x 1x 1x 1x 10/100 Mbps IEEE-1588 Ethernet MAC 0 0 0 1x 1x Low Power UART/LIN (LPUART) 0 0 0 2x 2x 2x Low Power SPI (LPSPI) 1x 2x 2x 3x 2x 2x Low Power SPI (LPSPI) 1x 2x 3x 2x 3x 2x Low Power SPI (LPSPI) 1x 2x 3x 3x <t< th=""><th></th><th>Low Power Interrupt Timer (LPIT)</th><th>1</th><th>x</th><th></th><th>1</th><th>x</th><th></th></t<>		Low Power Interrupt Timer (LPIT)	1	x		1	x	
Hear Time Counter (H1C) 1x 1x 1x Programmable Delay Block (PDB) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) Tigger mux (TRGMUX) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Msps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (22) Comparator with 8-bit DAC 1x (13) 1x (16) 2x (16) 2x (24) 2x (23) Output Only Mbps IEEE-1588 Ethernet MAC 0 0 0 1x 1x Serial Audio Interface (AC97, TDM, I2S) 0 0 0 0 2x 2x Low Power UART/LIN (LPUART) (Supports LIN protocol versions 13, 2, 0, 2, 1, 2, 2A, and SAE J2602) 2x 2x 3x 2x Low Power SPI (LPSPI) 1x 2x 2x 3x 3x <t< td=""><td>-</td><td>FlexTimer (16-bit counter) 8 channels</td><td>2x</td><td>(16)</td><td>4x</td><td>(32)</td><td>6x (48)</td><td>8x (64)</td></t<>	-	FlexTimer (16-bit counter) 8 channels	2x	(16)	4x	(32)	6x (48)	8x (64)
Hear Time Counter (H1C) 1x 1x 1x Programmable Delay Block (PDB) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) Tigger mux (TRGMUX) 1x (43) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Msps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (24) </td <td>me</td> <td>Low Power Timer (LPTMR)</td> <td>1</td> <td>x</td> <td></td> <td>1</td> <td>x</td> <td></td>	me	Low Power Timer (LPTMR)	1	x		1	x	
Trigger mux (TRGMUX) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Msps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (32) Comparator with 8-bit DAC 1x 1x 1x 1x 1x 10/100 Mbps IEEE-1588 Ethernet MAC o o 1x 1x Serial Audio Interface (AC97, TDM, I2S) o o 2x 2x Low Power UART/LIN (LPUART) 2x 0, 2.1, 2.2.4, and SAE J2602) 2x 2x 3x Low Power SPI (LPSPI) 1x 2x 2x 3x Low Power I2C (LPI2C) 1x 1x 2x 3x FlexCAN (CAN-FD ISO/CD 11898-1) 1x 1x 2x 3x 3x FlexCAN (CAN-FD ISO/CD 11898-1) 1x 1x 1x 2x 3x 3x <td< td=""><td>-</td><td>Real Time Counter (RTC)</td><td>1</td><td>х</td><td></td><td>1</td><td>х</td><td></td></td<>	-	Real Time Counter (RTC)	1	х		1	х	
Instrument Instrum		Programmable Delay Block (PDB)	1	х		2	²x	
Image: Second parador with Gold Data IX IX Image: Second parador with Gold Data 0 0 0 1X Image: Second parador with Gold Data 0 0 0 1X Second Audio Interface (AC97, TDM, I2S) 0 0 0 2X Low Power UARTLIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2.4, and SAE J2602) 2X 2X 3X Low Power SPI (LPSPI) 1x 2x 2X 3X Low Power SPI (LPSPI) 1x 2X 3X Low Power I2C (LPI2C) 1x 1X 2X FlexCAN (CAN-FD ISO/CD 11898-1) (1x with FD) (1x with FD) (2x with FD) FlexIO (8 pins configurable as UART, SPI, I2C, I2S) 1X 1X 3X Bebug & trace SWD, MTB (1 KB), JTAG4 SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO) Ibebug & trace NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, Systems NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, Systems	g	Trigger mux (TRGMUX)	1x (43)	1x (45)	1x	(64)	1x (73)	1x (81)
Image: Second parador with Gold Data IX IX Image: Second parador with Gold Data 0 0 0 1X Image: Second parador with Gold Data 0 0 0 1X Second Audio Interface (AC97, TDM, I2S) 0 0 0 2X Low Power UARTLIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2.4, and SAE J2602) 2X 2X 3X Low Power SPI (LPSPI) 1x 2x 2X 3X Low Power SPI (LPSPI) 1x 2X 3X Low Power I2C (LPI2C) 1x 1X 2X FlexCAN (CAN-FD ISO/CD 11898-1) (1x with FD) (1x with FD) (2x with FD) FlexIO (8 pins configurable as UART, SPI, I2C, I2S) 1X 1X 3X Bebug & trace SWD, MTB (1 KB), JTAG4 SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO) Ibebug & trace NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, Systems NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, Systems	nalc	12-bit SAR ADC (1 Msps each)	1x (13)	1x (16)	2x	(16)	2x (24)	2x (32)
Serial Audio Interface (AC97, TDM, I2S) o o 2x Low Power UART/LIN (LPUART) (Supports LIN protocol versions 13, 2.0, 2.1, 2.2A, and SAE J2602) 2x 2x 3x 3x Low Power VART/LIN (LPUART) (Supports LIN protocol versions 13, 2.0, 2.1, 2.2A, and SAE J2602) 1x 2x 3x 3x Low Power VART/LIN (LPUART) (Supports LIN protocol versions 13, 2.0, 2.1, 2.2A, and SAE J2602) 1x 2x 3x 3x Low Power SPI (LPSPI) 1x 2x 2x 3x 3x 3x Low Power I2C (LPI2C) 1x 1x 2x 3x 3x <td< td=""><td>Ā</td><td>Comparator with 8-bit DAC</td><td>1</td><td>х</td><td></td><td>1</td><td>х</td><td></td></td<>	Ā	Comparator with 8-bit DAC	1	х		1	х	
Image: Subscription		10/100 Mbps IEEE-1588 Ethernet MAC		o		0		1x
HexCAN (CAN-FD ISO/CD 11898-1) 1x (CAN-FD ISO/CD 11898-1) 1x (1x with FD) 2x (1x with FD) 3x (1x with FD) 3x (2x with FD) 3x (2x with FD) </td <td>c</td> <td>Serial Audio Interface (AC97, TDM, I2S)</td> <td></td> <td>o</td> <td></td> <td>0</td> <td></td> <td>2x</td>	c	Serial Audio Interface (AC97, TDM, I2S)		o		0		2x
HexCAN (CAN-FD ISO/CD 11898-1) 1x (CAN-FD ISO/CD 11898-1) 1x (X with FD) 2x (1x with FD) 3x (1x with FD) 3x (2x with FD) 3x (3x with FD) 3x (3x with FD) <td>licatio</td> <td>Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)</td> <td>2</td> <td>x</td> <td>2x</td> <td></td> <td>Зx</td> <td></td>	licatio	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	2	x	2x		Зx	
FlexCAN (CAN-FD ISO/CD 11898-1) 1X (X with FD) 2X (1x with FD) 3X (1x with FD) 3X (2x with FD) 3X (3x with FD)	n.	Low Power SPI (LPSPI)	1x	2x	2x		Зx	
FlexCAN (CAN-FD ISO/CD 11898-1) 1x (1x with FD) 2x (1x with FD) 3x (1x with FD) 3x (2x with FD) 3x with FD	Ш	Low Power I2C (LPI2C)	1	x		1x		2x
Bebug & trace SWD, MTB (1 KB), JTAG ⁴ SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO) Ecosystem (IDE, compiler, debugger) NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems	o							3x (3x with FD)
Debug & trace SWD, MTB (1 KB), JTAG ⁴ SWD, JTAG (ITM, SWV, SWO) (ITM, SWV SWO), ETI Ecosystem (IDE, compiler, debugger) NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, iSystems NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm@, Lauterbach, iSystems		FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x		
Ecosystem NXP S32 Design Studio (GCC) + SDK, NXP S32 Design Studio (GCC) + SDK, (IDE, compiler, debugger) IAR, GHS, Arm®, Lauterbach, iSystems IAR, GHS, Arm®, Lauterbach, iSystems	DEs	Debug & trace	SWD, MTB (1 KB), JTAG ⁴	SWD, JTAG (ITM, SWV, SWO)			SWD, JTAG (ITM, SWV, SWO), ETM
	5	Ecosystem (IDE, compiler, debugger)			1	AR, GHS, Arm®, L	auterbach, iSysten	ıs
Beckages5 32-pin QFN 48-pin LQFP 46-pin LQFP 64-pin LQFP 100-pin MAPBGA 100-pin MAPBGA 100-pin LQFP 48-pin LQFP 64-pin LQFP 64-pin LQFP 100-pin LQFP 1	Other	Packages ⁵			64-pin LQFP	100-pin LQFP	100-pin LQFP	100-pin MAPBGA 100-pin LQFP ⁶ 144-pin LQFP 176-pin LQFP

LEGEND:

• Not implemented

Available on the device

No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.

2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

- 4 Only for Boundary Scan Register
- 5 See Dimensions section for package drawings
 6 QuadSPI is not supported for S32K148 in 100-pin LQFP

Figure 3. S32K1xx product series comparison

Feature comparison

		S32K14	xW			
	Parameter	S32K144W	S32K142W			
	Core	Arm®	Cortex [™] -M4F			
	Frequency	up to 80 N	ЛНz			
	IEEE-754 FPU	•				
	Cryptographic Services Engine (CSEc)	•				
	CRC module	1x				
	ISO 26262	capable up to	ASIL-B			
	Peripheral speed	up to 80 M	ЛНz			
	Crossbar	•				
Ē	DMA	•				
System	External Watchdog Monitor (EWM)	•				
Ś	Memory Protection Unit (MPU)	•				
	FIRC CMU	0				
	Watchdog	•				
	Low power modes	•				
	HSRUN mode	0				
	Number of I/Os	43 (48-pin LQFP)	58 (64-pin LQFP)			
	Single supply voltage	3.13 - 5.5				
	Ambient Operation Temperature (Ta)	-40°C to +1				
	Flash	512 KB	256 KB			
	Error Correcting Code (ECC)	•				
~	System RAM (including FlexRAM)	64 KB	32 KB			
Memory	FlexRAM	4 KB				
Mer	Cache	4 KB				
_	EEPROM emulated by FlexRAM	4 KB (up to 64 K	B D-Flash)			
	External memory interface	0				
	Low Power Interrupt Timer (LPIT)	1x				
P	FlexTimer (16-bit counter) 8 channels	48-pin LQFP: 4x (26 channels)	64-pin LQFP: 4x (30 channels)			
Ē	Low Power Timer (LPTMR)	1x				
	Real Time Counter (RTC)	1x				
	Programmable Delay Block (PDB)	2x				
5	Trigger mux (TRGMUX)	1x (59)				
Analog	12-bit SAR ADC (1 Msps each)	48-pin LQFP: 1x (14 channels 64-pin LQFP: 1x (16 channels				
	Comparator with 8-bit DAC	48-pin LQFP: 1x (6 channels)	64-pin LQFP: 1x (8 channels)			
	10/100 Mbps IEEE-1588 Ethernet MAC	0				
5	Serial Audio Interface (AC97, TDM, I2S)	0				
Communication	Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)	48-pin LQFP: 2x	64-pin LQFP: 3x			
unu	Low Power SPI (LPSPI)	48-pin LQFP: 2x	64-pin LQFP: 3x			
omr	Low Power I2C (LPI2C)	1x				
õ	FlexCAN (CAN-FD ISO/CD 11898-1)	48-pin LQFP: 2x(2x FD)	64-pin LQFP: 2x(2x FD)			
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1x				
IDEs	Debug & trace	SWD, JTAG (ITM, S	WV, SWO)			
9	Ecosystem (IDE, compiler, debugger)	NXP S32 Design Studi IAR, GHS, Arm®, Laute				
Other	Packages ¹	48-pin LQFP 6	64-pin LQFP			

LEGEND: • Not implemented • Available on the device 1 See Dimensions section of Datasheet for package drawings

Figure 4. S32K14xW product series comparison

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

3.2 Ordering information

Product status

P: Prototype F: Qualified

Product type/brand

S32: Automotive 32-bit MCU

Product line K: Arm Cortex MCUs

Series/Family

1: 1st product series 2: 2nd product series

Core platform/Performance

- 1: Arm Cortex M0+
- 4: Arm Cortex M4F

Memory size

	2	4	6	8
S32K11x			128K	256K
S32K14x/ S32K14xW	256K	512K	1M	2M

Ordering option

X: Speed L: 48 MHz with DMA (S32K11x only) H: 80 MHz U¹: 112 MHz (Not valid with M temperature/125C) W: 80 MHz (S32K14xW only)

Y: Optional feature

- F: CAN FD, FlexIO
- A1: CAN FD, FlexIO, Security
- E: Ethernet, Serial Audio Interface (S32K148 only)
- J¹: Ethernet, Serial Audio Interface, CAN FD,
- FlexIO, Security (S32K148 only) I: ISELED, FlexIO
- L¹: ISELED, CAN FD, FlexIO, Security
- G¹: ISELED, Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only)

Wafer Fab and Mask revision identifier

- Tx: Wafer Fab identifier
- x0: Mask Revision identifier

1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.

2. Part numbers no longer offered as standard include:

Ordering Option X

M: 64MHz

B: 48 MHz without DMA (S32K11x only)

Ordering Option Y

N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148

- R: Basic feature set
- S: Security
- B: CAN FD, FlexIO, limited RAM (S32K14x only)
- C: CAN FD, FlexIO, Security, limited RAM (S32K14x only)
- V: NFC Stack License
- X1: CAN FD, FlexIO, Security with NFC Stack License

Temperature C: -40C to 85

NOTE

Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts.

Figure 5. Ordering information S32K1xx Data Sheet, Rev. 14, 08/2021

Temperature

V: -40C to 105C M: -40C to 125C W: -40 to 150C

Pins	LQFP	QFN	BGA
32	-	FM	
48	LF	-	•
64	LH		•
100	LL		мн
144	LQ		
176	LU		•

Tape and Reel T: Trays/Tubes R: Tape and Reel

4 General

4.1 Absolute maximum ratings

NOTE

- Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.
- Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.
- All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation.
- Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V _{DD} ²	2.7 V - 5. 5V input supply voltage	—	-0.3	5.8 ³	V
V _{REFH}	3.3 V / 5.0 V ADC high reference voltage		-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} 4	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to $\ensuremath{V_{SS}}$		-0.8	5.8 ⁵	V
INJSUM_DC_ABS	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	—	—	30	mA
T _{ramp} ⁶	ECU supply ramp rate	_	0.5 V/min	500 V/ms	—
T _{ramp_MCU} ⁷	MCU supply ramp rate		0.5 V/min	100 V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	—	-55	165	°C
V _{IN_TRANSIENT}	Transient overshoot voltage allowed on I/O pin beyond $V_{IN_DC\ limit}$			6.8 ⁹	V

 Table 1. Absolute maximum ratings for S32K1xx series

1. All voltages are referred to V_{SS} unless otherwise specified.

 As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.

3. 60 seconds lifetime – No restrictions i.e. the part is not held in reset and can switch.

10 hours lifetime - The part is held in reset by an external circuit i.e. the part cannot switch.

The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset or powered off.

Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime, the part will operate with reduced functionality.

Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours cumulative over lifetime.

If the given time limits or supply levels are exceeded, the device may get damaged.

- 4. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_J (Junction temperature)=135 °C. Assumes T_A =125 °C for RUN mode
 - T_J (Junction temperature)=125 °C. Assumes T_A=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

Table 2. Absolute maximum ratings for S32K14xW series

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V _{DD} ²	2.7 V - 5. 5V input supply voltage	—	-0.3	5.8 ³	V
V _{REFH}	3.3 V / 5.0 V ADC high reference voltage	—	-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} 4	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to $\rm V_{SS}$	—	-0.8	5.8 ⁵	V
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	—	—	30	mA
T _{ramp} ⁶	ECU supply ramp rate	—	0.5 V/min	500 V/ms	—
T _{ramp_MCU} ⁷	MCU supply ramp rate	—	0.5 V/min	100 V/ms	—
T _A ⁸	Ambient temperature	—	-40	150	°C
T _{STG}	Storage temperature	—	-55	165	°C
VIN_TRANSIENT	Transient overshoot voltage allowed on I/O pin beyond $V_{IN_DC\ limit}$			6.8 ⁹	V

1. All voltages are referred to V_{SS} unless otherwise specified.

 As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.

3. 60 seconds lifetime - No restrictions i.e. the part is not held in reset and can switch.

10 hours lifetime – The part is held in reset by an external circuit i.e. the part cannot switch.

The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset or powered off.

Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime, the part will operate with reduced functionality.

Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours cumulative over lifetime.

If the given time limits or supply levels are exceeded, the device may get damaged.

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit

General

- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_J (Junction temperature)=170 °C. Assumes T_A=150 °C for RUN mode
 - T_J is the absolute maximum rating temperature at which the product will not be damaged, guaranteed by intrinsic reliability.
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Table 3.	Voltage and current o	perating requirements	for S32K1xx series 1
----------	-----------------------	-----------------------	----------------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V _{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	4
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} 7	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

- 1. Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.
- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V

- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	3.13	5.5	V	3
V_{DD_OFF}	Voltage allowed to be developed on V_{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V _{DDA}	Analog supply voltage	3.13	5.5	V	3
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	3
V _{REFH}	ADC reference voltage high	3.13	V _{DDA} + 0.1	V	4
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	5
I _{INJPAD_DC_OP} ⁶	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

Table 4. Voltage and current operating requirements for S32K14xW series 1

- 1. Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.
- 4. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 5. Open drain outputs must be pulled to V_{DD} .
- 6. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.

4.3 Thermal operating characteristics

Table 5. Thermal operating characteristics for S32K1xx series

Symbol	Parameter		Value						
		Min.	Тур.	Max.					
T _{A C-Grade Part}	Ambient temperature under bias	-40	_	85 ¹	°C				
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105 ¹	°C				
T _{A V-Grade Part}	Ambient temperature under bias	-40	—	105 ¹	°C				
T _{J V-Grade Part}	Junction temperature under bias	-40	_	125 ¹	°C				
T _{A M-Grade Part}	Ambient temperature under bias	-40	_	125 ²	°C				
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C				

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

General

Symbol	Parameter		Value					
		Min.	Тур.	Max.				
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85	°C			
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105	°C			
T _{A V-Grade Part}	Ambient temperature under bias	-40	—	105	°C			
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125	°C			
TA M-Grade Part	Ambient temperature under bias	-40	_	125 ¹	°C			
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ¹	°C			
T _{A W-Grade Part}	Ambient temperature under bias	-40	—	150 ¹	°C			
T _{J W-Grade Part}	Junction temperature under bias	-40	_	170 ¹	°C			

 Table 6. Thermal operating characteristics for S32K14xW series

1. Values mentioned are measured at \leq 80 MHz in RUN mode.

4.4 Power and ground pins

NOTE: V_{DD} and V_{DDA} must be shorted to a common source on PCB

Figure 6. Pinout decoupling

Table 7. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100	—	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.
 - No trace exceeding 1 mm from the protection to the trace or to the ground.
 - The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
 - The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

*Note: VSSA and VSS are shorted at package level

Figure 7. Power diagram

4.5 LVR, LVD and POR operating requirements

Table 8. V_{DD} supply LVR, LVD and POR operating requirements for S32K1xx series1

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V_{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis		45	—	mV	2
V _{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	—	50	_	mV	2

Table continues on the next page ...

General

Table 8. V_{DD} supply LVR, LVD and POR operating requirements for S32K1xx series1 (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	—	mV	2
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

1. In 3.3 V range, the VLVW is always set since supply remains below VLVW range. Hence PMC.LVDSC2[LVWIE] should remain cleared while device operates in 3.3 V range.

2. Rising threshold is the sum of falling threshold and hysteresis voltage.

Table 9. V_{DD} supply LVR and POR operating requirements for S32K14xW series1

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V _{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	V _{LVR} LVR falling threshold (RUN and STOP modes)		3.02	3.07	V	
V _{LVR_HYST}	LVR hysteresis	_	45	—	mV	2
V _{LVR_LP} ³	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVW}	Falling low-voltage warning threshold	4.17	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	—	75	—	mV	2
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

1. In 3.3 V range, the VLVW is always set since supply remains below VLVW range. Hence PMC.LVDSC2[LVWIE] should remain cleared while device operates in 3.3 V range.

2. Rising threshold is the sum of falling threshold and hysteresis voltage.

3. An internal monitor could reset the chip at a higher supply level, but 3.13 V onward the chip is fully functional.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

Table 10.	Clock configuration
-----------	----------------------------

	S32K1xx	S32K14xW
RUN mode	•	•
Clock source	FIRC	FIRC
SYS_CLK/CORE_CLK	48 MHz	48 MHz
BUS_CLK	48 MHz	48 MHz
FLASH_CLK	24 MHz	16 MHz
HRUN mode		
Clock source	SPLL	NA
SYS_CLK/CORE_CLK	112 MHz	NA
BUS_CLK	56 MHz	NA

Table continues on the next page...

Table 10. Clock configuration (continued)

	S32K1xx	S32K14xW
FLASH_CLK	28 MHz	NA
VLPR mode		
Clock source	SIRC	SIRC
SYS_CLK/CORE_CLK	4 MHz	1 MHz
BUS_CLK	4 MHz	1 MHz
FLASH_CLK	1 MHz	0.25
STOP1/STOP2 mode		
Clock source	FIRC	FIRC
SYS_CLK/CORE_CLK	48 MHz	48 MHz
BUS_CLK	48 MHz	48 MHz
FLASH_CLK	24 MHz	16 MHz
VLPS mode		
	All clock source disabled ¹	

1. • For S32K11x – FIRC/SOSC

• For S32K14x, S32K14xW - FIRC/SOSC/SPLL

Table 11. Power mode transition operating behaviors for S32K1xx series

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	_	325		μs
	VLPS → RUN	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	$STOP2 \to RUN$	0.07	0.075	0.08	μs
	$VLPR \rightarrow RUN$	19	_	26	μs
	$VLPR \rightarrow VLPS$	5.1	5.7	6.5	μs
	$VLPS \rightarrow VLPR$	18.8	23	27.75	μs
	$RUN \rightarrow Compute operation$	0.72	0.75	0.77	μs
	HSRUN → Compute operation	0.3	0.31	0.35	μs
	$RUN \rightarrow STOP1$	0.35	0.38	0.4	μs
	$RUN \to STOP2$	0.2	0.23	0.25	μs
	$RUN \to VLPS$	0.3	0.35	0.4	μs
	$RUN \rightarrow VLPR$	3.5	3.8	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset \rightarrow Code execution	_	214	_	μs

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 3.13 V to execution of the first instruction across the operating temperature range of the chip.	_	375		μs
	$VLPS \rightarrow RUN$	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	$STOP2 \to RUN$	0.07	0.075	0.08	μs
	VLPR → RUN	152	—	208	μs
	$VLPR \rightarrow VLPS$	25	34	39	μs
	$VLPS \rightarrow VLPR$	18.8	23	27.75	μs
	$RUN \rightarrow Compute operation$	0.72	0.75	0.77	μs
	$RUN \rightarrow STOP1$	0.35	0.38	0.4	μs
	$RUN \to STOP2$	0.2	0.23	0.25	μs
	$RUN \to VLPS$	0.3	0.35	0.4	μs
	$RUN \rightarrow VLPR$	7	7.6	10	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset → Code execution	_	255	_	μs

Table 12. Power mode transition operating behaviors for S32K14xW series

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations. Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the following table Table 13. For full functionality refer to table: Module operation in available power modes of the *Reference Manual*.

Table 13. Power consumption (Typicals unless stated otherwise) 1

			VLPS ((µA) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³		
	Ambient Temperature (°C)			Peripherals disabled ⁵	LPTMR enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴
S32K116	25	Тур	26	40	1.05	1.07	1.70	6.3	7.2	11.8	20.3	NA						245	
	85	Тур	76	93	1.1	1.11	1.77	6.6	7.5	12	20.6							251	
		Max	287	300	1.39	1.4	NA	8	8.9	13.4	22.1							279	
	105	Тур	139	164	1.15	1.16	1.81	6.8	7.7	12.3	20.8							255	
		Max	590	603	1.68	1.69	NA	9.2	10.1	14.5	23.1							302	
	125	Тур	NA	NA	NA	NA	1.96	NA	NA	NA	NA							NA	
		Max	891	904	2.02	2.04	NA	10.4	11.3	15.6	24.1							325	
S32K118	25	Тур	27	40	1.15	1.16	1.76	6.4	7.3	12.8	21.5			Ν	IA			268	
	85	Тур	81	100	1.20	1.21	1.82	6.7	7.6	13.2	21.8							274	
		Max	304	323	1.46	1.47	NA	8	9	14.5	23.4							301	
	105	Тур	149	175	1.27	1.28	1.89	6.9	7.9	13.4	22.1							279	
		Max	606	637	1.76	1.77	NA	9.3	10.4	15.4	24.2							320	
	125	Тур	NA	NA	NA	NA	2.03	NA	NA	NA	NA							NA	
		Max	1111	1126	2.32	2.33	NA	11.0	11.9	17.1	25.9							357	
S32K142	25	Тур	29	40	1.17	1.21	2.19	6.4	7.4	17.3	24.6	24.5	31.3	28.8	37.5	40.5	52.2	360	
	85	Тур	128	137	1.48	1.51	2.31	7	8	17.6	24.9	25	31.6	29.1	37.7	41.1	52.5	364	
		Max	335	360	1.87	1.89	NA	8.6	9.4	22	28.2	26.9	33.5	32	40	44	55.6	400	

S32K1xx Data Sheet, Rev. 14, 08/2021

21

Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued)

General

			VLPS ((μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		I@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	LPTMR enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
	105	Тур	240	257	1.58	1.61	2.44	7.6	8.3	18.3	25.7	25.5	31.9	29.8	38	41.5	53.1	373
		Max	740	791	2.32	2.34	NA	9.9	10.9	23.1	30.2	27.8	35.3	33.8	40.7	44.9	57.4	423
	125	Тур	NA	NA	NA	NA	2.84	NA	NA	NA	NA	NA	NA	NA	NA	N	IA	NA
		Max	1637	1694	3.1	3.21	NA	12.7	13.7	25	32.9	30.7	38.8	36	43.8	N	IA	450
S32K144	25	Тур	29.8	42	1.48	1.50	2.91	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378
	85	Тур	150	159	1.72	1.85	3.08	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	NA	9.2	9.9	23.2	29.6	29.3	36.2	34.8	42.1	46.3	59.7	435
	105	Тур	256	273	1.80	2.10	3.23	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	NA	10.3	11.1	23.9	30.6	30.3	37.3	35.6	43.5	47.9	61.3	445
	125	Тур	NA	NA	NA	NA	3.65	NA	NA	NA	NA	NA	NA	NA	NA		IA	NA
		Max	1960	1998	3.18	3.25	NA	12.9	13.8	26.9	33.6	35	40.3	38.7	46.8	N	IA	484
S32K14xW	25	Тур	37.7	42	1.6	1.61	3	7.31	8.05	19.9	26.9	27	33.3	30.2	39.6	N	/A	378
	85	Тур	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	/A	N/A
		Max	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	/A	N/A
	105	Тур	277	280	1.9	2.1	3.42	8.28	9.03	21.1	27.4	27.5	33.8	31.2	40.5		/A	390
		Max	905	910	2.68	2.71	N/A	10.4	11.1	25.9	30.7	32.4	37.4	36.4	43.6		/A	455
	125	Тур	745	747	2.38	2.39	3.84	9.9	10.7	22.8	28.6	29	34.5	32.7	41	N	/A	409

Table continues on the next page...

22

Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued)

				VLPS (μΑ) ²	VI	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
S32K1xx	Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	LPTMR enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
(Data			Max	1970	1999	3.29	3.3	N/A	13.3	14	30	34.6	36.4	41.5	40.1	47.3	N	/A	501
ita (150	Тур	N/A	N/A	N/A	N/A	4.93	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	/A	N/A
Sheet,			Max	3946	3980	6.39	6.41	N/A	23.2	23.9	41	45.7	47.4	52.1	51	57.2	N	/A	638
et, F	S32K146	25	Тур	37	47	1.57	1.61	3.3	8	9.2	23.4	31.4	30.5	40.2	36.2	47.6	52	68.3	452
Rev.		85	Тур	207	209	1.79	1.83	3.54	8.9	10.1	24.4	32.4	31.5	41.3	37.2	48.7	53.3	69.8	465
14,			Max	974	981	3.32	3.38	NA	12.7	13.9	29.3	37.9	36.7	47	42.4	54.4	60.3	78	530
		105	Тур	419	422	1.99	2.04	3.78	9.8	11	25.3	33.4	32.5	42.2	38.1	49.6	54.4	70.8	477
08/2021			Max	2004	2017	4.06	4.13	NA	17.1	18.3	34.1	42.6	41.3	51.4	46.9	58.8	65.7	82.8	587
E		125	Тур	NA	NA	NA	NA	4.44	NA	NA	NA	NA	NA	NA	NA	NA	N		NA
			Max	3358	3380	5.28	5.38	NA	22.6	23.7	40.2	48.8	47.3	57.4	52.8	64.8	N	A	660
	S32K148 ⁸	25	Тур	38	54	2.17	2.20	3.45	8.5	9.6	27.6	34.9	35.5	45.3	42.1	57.7	60.3	83.3	526
		85	Тур	336	357	2.30	2.35	3.74	10.1	11.1	29.1	37.0	36.8	46.6	43.4	59.9	62.9	88.7	543
			Max	1660	1736	3.48	3.55	NA	14.5	15.6	34.8	43.6	41.9	53.9	48.7	65.1	70.4	96.1	609
		105	Тур	560	577	2.49	2.54	4.03	10.9	11.9	29.8	37.8	37.6	47.5	45.2	61.5	63.8	89.1	565
			Max	2945	2970	4.40	4.47	NA	18.0	19.0	38.4	46.8	44.9	55.3	51.6	66.8	73.6	97.4	645
		125	Тур	NA	NA	NA	NA	4.85	NA	NA	NA	NA	NA	NA	NA	NA	N		NA
			Max	3990	4166	6.00	6.08	NA	23.4	24.5	44.3	52.5	50.9	61.3	57.5	71.6	N	A	719

23

- Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes
 V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for
 all unused input pins.
- 2. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 3. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 4. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN@48 MHz with peripherals disabled.
- 5. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 6. Data collected using RAM
- 7. Numbers on limited samples size and data collected with Flash
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.

24

Table 14. VLPS additional use-case power consumption at typical conditions 1, 2, 3

Use-case	Description	Temp.				Device				Uni
			S32K116	S32K11 8	S32K142	S32K144	S32K14x W	S32K146	S32K148	
VLPS and RTC	Clock source: LPO or	25	30	30	30	31	31	38	40	μA
	RTC_CLKIN	85	96	102	148	170	_	227	356	μA
		105	179	189	280	290	305	460	600	μA
		125	281	327	570	680	700	810	1250	μA
		150	_	_	_	-	1310	_	_	μA
VLPS and	Clock source: SIRC	25	179	187	230	230	248	250	250	μA
LPUART TX/RX	 Transmiting or receiving continuously using DMA 	85	235	244	320	400	_	410	490	μA
	Baudrate: 19.2 kbps	105	304	325	490	550	563	600	850	μA
		125	499	551	890	1070	1102	1250	1960	μA
			_	_	_	-	2048	_	_	μA
VLPS and LPUART wake-up	 Clock source: SIRC Wake-up address feature enabled Baudrate: 19.2 kbps 	25	107	107	135	138	140	146	146	μı
		85	149	157	170	240	_	280	350	μ
		105	199	223	260	400	424	480	600	μı
		125	347	405	530	580	703	1000	1280	μı
		150	_	_	-	-	1340	_	_	μA
VLPS and LPI2C	Clock Source: SIRC	25	600	600	670	690	691	820	900	μA
master	 Transmit/receive using DMA Baudrate: 100 kHz 	85	696	712	880	960	_	1220	1370	μı
	· Daudrate. 100 kHz	105	815	852	1080	1250	1320	1660	2060	μı
		125	1152	1251	1970	1980	2001	2860	3690	μA
		150	_	_	_	-	4228	-	_	μA
VLPS and LPI2C	Clock source: SIRC	25	260	260	260	260	260	270	280	μA
slave wake-up	 Wake-up address feature enabled 	85	293	308	340	340	_	410	510	μA
	 Baudrate: 100 kHz 	105	339	367	430	430	458	610	810	μı
		125	478	543	740	760	774	1170	1540	μı
		150	_	_	_	-	1691	_	_	μA
VLPS and LPSPI	Clock source: SIRC	25	2.51	2.94	2.99	3.19	3.2	3.75	4.11	m
master ⁴	Transmit/receive using DMABaudrate: 500 kHz	85	2.67	3.09	3.26	3.7	-	4.35	4.93	m

General

Use-case	Description	Temp.				Device				Unit
			S32K116	S32K11 8	S32K142	S32K144	S32K14x W	S32K146	S32K148	
		105	2.83	3.21	3.5	4.2	4.34	4.93	5.74	mA
		125	3.34	3.53	3.93	4.63	5.38	5.97	7.38	mA
		150	-	-	_	-	7.49	-	-	mA
VLPS and LPIT	Clock source: SIRC	25	114	114	114	114	116	120	130	μA
	1 channel enableMode: 32-bit periodic counter	85	158	164	190	250	-	260	320	μA
		105	210	223	310	410	425	440	570	μA
		125	371	408	640	750	780	910	1280	μA
		150	-	-	-	-	1380	-	-	μA

General

Table 14. VLPS additional use-case power consumption at typical conditions 1, 2, 3(continued)

1. All power numbers listed in this table are typical power numbers

2. Current numbers are quoted for a certain application code and may vary on user configuration and silicon process variation.

3. The power numbers are not strictly for the VLPS mode operation alone, but also includes power due to periodic wakeup. The power therefore includes wakeup plus VLPS mode activity. This leads to greater dependence of power numbers on application code.

4. The single LPSPI used is LPSPI1 in S32K14X devices but LPSPI0 in S32K11x devices.

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Chip/Device	Ambient		RUN@80	MHz (mA)	HSRUN@112 MHz (mA) ¹		
	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	
S32K148	25	Тур	67.3	79.1	89.8	105.5	
	85	Тур	67.4	79.2	95.6	105.9	
		Max	82.5	88.2	109.7	117.4	
	105	Тур	68.0	79.8	96.6	106.7	
		Max	80.3	89.1	109.0	119.0	
	125	Max	83.5	94.7	N	İA	

Table 15.Power consumption at 3.3 V

1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD and latch-up protection characteristics

Symbol	Description	Min.	Max.	Unit
V _{HBM}	Electrostatic discharge voltage, human body model ¹ , ² , ³	- 4000	4000	V
V _{CDM}	Electrostatic discharge voltage, charged-device model ¹ , ² , ⁴			•
	All pins except the corner pins	- 500	500	V
	Corner pins only	- 750	750	V
I _{LAT}	Latch-up current at ambient temperature of 125 °C5	- 100	100	mA

1. Device failure is defined as: "If after exposure to ESD pulses, the device does not meet specification requirements."

2. All ESD testing conforms with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

3. This parameter is tested in conformity with AEC-Q100-002.

4. This parameter is tested in conformity with AEC-Q100-011.

5. This parameter is tested in conformity with AEC-Q100-004.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 8. Input signal measurement reference

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50	—	ns	3
WFRST	RESET input filtered pulse	—	10	ns	4
WNFRST	RESET input not filtered pulse	Maximum of (100 ns, bus clock period)	_	ns	5

Table 16. General switching specifications

- This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. Maximum length of RESET pulse which will be the filtered by internal filter only if PCR_PTA5[PFE] is at its reset value of 1'b1.
- 5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter only if PCR_PTA5[PFE] is at its reset value of 1'b1. This number depends on the bus clock period also. In this case, minimum pulse width which will cause reset is 250 ns. For faster clock frequencies which have clock period less than 100 ns, the minimum pulse width not filtered will

be 100 ns. After this filtering mechanism, the software has an option to put additional filtering in addition to this, by means of PCM_RPC register and/or PORT_DFER register for PTA5.

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 17 and Table 19, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Table 17.	DC electrical	specifications at 3.3	V Range for S32K1xx series
-----------	---------------	-----------------------	----------------------------

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	_	V	
Ioh _{GPIO}	I/O current source capability measured when $rad V_{1} = 0.8 V_{2}$	3.5	_	_	mA	
loh _{GPIO-HD_DSE_0}	pad $V_{oh} = (V_{DD} - 0.8 V)$					
lol _{GPIO}	I/O current sink capability measured when	3	—	_	mA	
Iol _{GPIO-HD_DSE_0}	pad $V_{ol} = 0.8 V$					
loh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	—	—	mA	4
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	—	—	mA	4
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	-	mA	5
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	-	mA	5
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	-	mA	5
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	—	-	mA	5
IOHT	Output high current total for all ports	—	_	100	mA	
IIN	Input leakage current (per pin) for full temperature range at V_{DD} = 3.3 V		5	500 ⁶	nA	7
	All pins other than high drive port pins		0.005	0.5	μA	-
	High drive port pins ⁸		0.010	0.5	μA	1
R _{PU}	Internal pullup resistors	20		60	kΩ	9
R _{PD}	Internal pulldown resistors	20		60	kΩ	10

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

2. For reset pads, same V_{ih} levels are applicable

I/O parameters

- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.
- 6. Typical leakage is given at room temperature. Maximum is given for 125°C. Leakage numbers increase with temperature, approximately every 12 14°C the value doubles. Leakage is tested at hot temperature. We ensure maximums are not exceeded. Please note that when the ADC module samples a pin, additional currents beyond the leakage number are drawn to charge the sample and hold capacitances and internal analog busses. These are difficult to predict
- 7. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 8. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 9. Measured at input $V = V_{SS}$
- 10. Measured at input $V = V_{DD}$

Table 18. DC electrical specifications at 3.3 V Range for S32K14xW series

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	3.13	3.3	4	V	
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	-	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	$0.3 \times V_{DD}$	V	2
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$		_	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5		_	mA	
Iol _{GPIO}	I/O current sink capability measured when	3	_	_	mA	
Iol _{GPIO-HD_DSE_0}	pad $V_{ol} = 0.8 V$					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	_	_	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	3
IOHT	Output high current total for all ports	_		100	mA	
IIN	Input leakage current (per pin) for full tempera	ture range at	V _{DD} = 3.3 V	1	1	4
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins (excluding XTAL pin)		0.010	0.5	μA	
	XTAL pin (PTB6) temperature $\leq 125^{\circ}$ C		0.010	0.5	μA	
	XTAL pin (PTB6) temperature ≥ 125° C			1.1	μA	1
R _{PU}	Internal pullup resistors	20		60	kΩ	5
R _{PD}	Internal pulldown resistors	20		60	kΩ	6

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 4. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 5. Measured at input $V = V_{SS}$
- 6. Measured at input V = V_{DD}

5.4 DC electrical specifications at 5.0 V Range

Table 19. DC electrical specifications at 5.0 V Range for S32K1xx series

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	—	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	—	—	V	
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5	_	—	mA	
Iol _{GPIO} Iol _{GPIO-HD_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	5	_	—	mA	
loh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	20	—	—	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	—	mA	3
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	14.0	_	—	mA	4
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	_	—	mA	4
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	21	—	—	mA	4
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	_	—	mA	4
IOHT	Output high current total for all ports	—	_	100	mA	
IIN	Input leakage current (per pin) for full temperature range at $V_{DD} = 3.3 \text{ V}$		5	500 ⁵	nA	6
	All pins other than high drive port pins		0.005	0.5	μA	1
	High drive port pins (excluding XTAL pin)		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	7
R _{PD}	Internal pulldown resistors	20		50	kΩ	8

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.
- 5. Typical leakage is given at room temperature. Maximum is given for 125°C. Leakage numbers increase with temperature, approximately every 12 14°C the value doubles. Leakage is tested at hot temperature. We ensure maximums are not exceeded. Please note that when the ADC module samples a pin, additional currents beyond the leakage number are drawn to charge the sample and hold capacitances and internal analog busses. These are difficult to predict
- Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All
 other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the
 Reference Manual.

I/O parameters

7. Measured at input $V = V_{SS}$

8. Measured at input $V = V_{DD}$

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	—	V _{DD} + 0.3	V	-1
V _{il}	Input Buffer Low Voltage	$V_{\rm SS} - 0.3$	_	0.35 x V _{DD}	V	1
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	—	V	
loh _{GPIO} Ioh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5		—	mA	
Iol _{GPIO}	I/O current sink capability measured	5		_	mA	
Iol _{GPIO-HD_DSE_0}	when pad V _{ol} = 0.8 V					
loh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	20	—	—	mA	2
IOI _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	—	mA	2
IOHT	Output high current total for all ports	—	—	100	mA	
IIN	Input leakage current (per pin) for full ter	mperature r	ange at V _{DD}) = 5.5 V		3
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	
	XTAL pin (PTB6) temperature $\leq 125^{\circ}$ C		0.010	0.5	μA	
	XTAL pin (PTB6) temperature ≥ 125° C			1.1	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	4

1. For reset pads, same V_{il} levels are applicable

2. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.

Internal pulldown resistors

3. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the **Reference Manual**

20

50

kΩ

5

4. Measured at input V = V_{SS}

R_{PD}

5. Measured at input $V = V_{DD}$

AC electrical specifications at 3.3 V range 5.5

Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series

Symbol	DSE	Rise time (nS) ¹		Fall time (nS) ¹		Capacitance (pF) ²	
		Min.	Max.	Min.	Max.		
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25	
		5.7	23.7	6.0	26.2	50	

Table continues on the next page ...

Symbol	DSE	Rise time (nS) ¹		Fall time (nS) ¹		Capacitance (pF) ²	
		Min.	Max.	Min.	Max.		
		20.0	80.0	20.8	88.4	200	
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25	
		5.7	23.7	6.0	26.2	50	
		20.0	80.0	20.8	88.4	200	
	1	1.5	5.8	1.7	6.1	25	
		2.4	8.0	2.6	8.3	50	
		6.3	22.0	6.0	23.8	200	
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25	
		3.0	7.1	2.6	7.5	50	
		12.0	27.0	10.3	26.8	200	
	1	0.4	1.3	0.38	1.3	25	
		1.5	3.8	1.4	3.9	50	
		7.4	14.9	7.0	15.3	200	

Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series (continued)

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

Table 22. AC electrical specifications at 3.3 V Range for S32K14xW series

Symbol	DSE	Rise tir	me (nS) ¹	Fall tin	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different. For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise time (nS) ¹		Fall time (nS) ¹		Capacitance (pF) ²	
		Min.	Max .	Min.	Max.	-	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25	
		5.0	15.7	5.1	17.4	50	
		17.3	54.8	17.6	59.7	200	
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25	
		5.0	15.7	5.1	17.4	50	
		17.3	54.8	17.6	59.7	200	
	1	1.1	4.6	1.1	5.0	25	
		2.0	5.7	2.0	5.8	50	
		5.4	16.0	5.0	16.0	200	
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25	
		2.0	5.0	1.9	5.2	50	
-		9.3	18.8	8.5	19.3	200	
	1	0.37	0.9	0.35	0.9	25	
		1.2	2.7	1.2	2.9	50	
		6.0	11.8	6.0	12.3	200	

Table 23. AC electrical specifications at 5 V Range for S32K1xx series

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

Table 24. AC electrical specifications at 5 V Range for S32K14xW series

Symbol	DSE	Rise time (nS) ¹		Fall time (nS) ¹		Capacitance (pF) ²	
		Min.	Max .	Min.	Max.		
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25	
		5.0	15.7	5.1	17.4	50	
		17.3	54.8	17.6	59.7	200	
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25	
		5.0	15.7	5.1	17.4	50	
		17.3	54.8	17.6	59.7	200	
	1	1.1	4.6	1.1	5.0	25	
		2.0	5.7	2.0	5.8	50	
		5.4	16.0	5.0	16.0	200	

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different. For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 25. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 26. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	_	112	MHz
f _{BUS}	Bus clock	—	56	MHz
f _{FLASH}	Flash clock	_	28	MHz
	Normal run mode (S32K11x series)		
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	—	48	MHz
f _{FLASH}	Flash clock	_	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40 ⁴	MHz
f _{FLASH}	Flash clock	—	26.67	MHz
	Normal run mode (S32K14xW series	s) ⁵	•	
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	—	40 ⁴	MHz
f _{FLASH}	Flash clock	—	20	MHz
	VLPR mode (S32K1xx series) ⁶			
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	4	MHz
f _{FLASH}	Flash clock	_	1	MHz
	VLPR mode (S32K14xW series) ⁶		•	
f _{SYS}	System and core clock	_	1	MHz
f _{BUS}	Bus clock	—	1	MHz
f _{FLASH}	Flash clock		0.25	MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.

Peripheral operating requirements and behaviors

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz
- 5. With SPLL as system clock source.
- 6. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications
Clock interface modules

Figure 9. Oscillator connections scheme

Table 27.	External S	ystem (Oscillator	electrical	specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g _{mXOSC}	Crystal oscillator transconductance				•	
	SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz	2.2	_	13.7	mA/V	
	SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz	16		47	mA/V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	1.15	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	_		1
C ₂	XTAL load capacitance	_	_	—		1
R _F	Feedback resistor					2
	Low-gain mode (HGO=0)	_	_	_	MΩ	

Clock interface modules

Table 27. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	_	1	—	MΩ	
R _S , ³	Series resistor					
	Low-gain mode (HGO=0)	—	0	—	kΩ	
	High-gain mode (HGO=1)	_	0	—	kΩ	
V_{pp_XTAL}	Peak-to-peak amplitude of oscillation (oscillator mode)	at XTAL			•	4
	Low-gain mode (HGO=0)	—	1.0	—	V	
	High-gain mode (HGO=1)	_	3.3	—	V]
V_{pp_EXTAL}	Peak-to-peak amplitude of oscillation (oscillator mode)	at EXTAL			·	4, 5
	Low-gain mode (HGO=0)	0.8	—	—	V	
	High-gain mode (HGO=1), V _{DD} = 4.0 V to 5.5 V	1.7	—	—	V]
V _{SOSCOP}	Oscillation operating point					4
	High-gain mode (HGO=1)	1.15	_	—	V]

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_{crit}$. The gm_crit is defined as:

gm_crit = 4 * (ESR + R_S) * $(2\pi F)^2$ * $(C_0 + C_L)^2$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- R_S is the series resistance connected between XTAL pin and external crystal for current limitation
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_{s} is stray or parasitic capacitance on the pin due to any PCB traces
- C1, C2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
- When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- 3. R_S should be selected carefully to have appropriate oscillation amplitude for both protecting crystal or resonator device and satisfying proper oscillation startup condition.
- 4. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
- 5. Minimum value is shown as a reference only, however the HW design needs to ensure it reaches the maximum value by following the guidelines given in above notes (notes 1, 2, and 3) and performs the required robustness testing at the application level. During testing, a low capacitance probe (< 5 pF) must be used to avoid any decrease in the V_{pp_EXTAL} value.

6.2.2 External System Oscillator frequency specifications

Table 28. External System Oscillator frequency specifications

Symbol	Description	Mi	n.	Ту	/p.	Ma	ax.	Unit	Notes
		S32K14x/ S32K14xW	S32K11x	S32K14x/ S32K11x S32K14xW		S32K14x/ S32K14xW	S32K11x		
f _{osc_hi}	Oscillator crystal or resonator frequency	4		_		40	1, 2	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	-	—		_		50 48		3, 2, 4
t _{dc_extal}	Input clock duty cycle (external clock mode)	4	8	50	0	5	2	%	3, 2, 4
t _{cst}	Crystal Start-up Time								
	8 MHz low-gain mode (HGO=0)	-	_	1.	5	-	_	ms	5
	8 MHz high-gain mode (HGO=1)	_		2.5		_		1	
	40 MHz low-gain mode (HGO=0)	-	-	2	2	-	_		
	40 MHz high-gain mode (HGO=1)	_	_	2	2	_	_		

1. For an ideal clock of 40 MHz, if permitted by application requirements, an error of +/- 5% is supported with 50% duty cycle.

(S32K14xW) At 40 MHz to 36 MHz when sourcing for ADC clock please use divider ADCn.ADC_CFG1[ADICLK] to ½ or lower for the specific ADC instance. This will help achieve duty cycle requirement. For 36 MHz and 32 MHz 45-55% or better duty cycle to be maintained. For frequencies lower than 32 MHz, please maintain duty cycle of 40-50% or better.

3. S32K1xx : Frequencies below 40 MHz can be used for degraded duty cycle upto 40-60%. When using for ADC clock further restrictions apply. At 50 MHz to 45 MHz when sourcing for ADC clock please use divider ADCn.ADC_CFG1[ADICLK] to ½ or lower for the specific ADC instance. This will help achieve duty cycle requirement. for 45 MHz and 41 MHz 45-55% or higher duty cycle should be maintained.

4. (S32K14xW) The limits to source ADC clock are 40 MHz, so in cases the input clock is higher than 40 MHz, it cannot be used as a source of ADC clock.

5. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 29. Fast internal RC Oscillator electrical specifications for S32K1xx series

Symbol	Parameter ¹		Value		Unit
		Min.	Тур.	Max.	
F _{FIRC}	FIRC target frequency	—	48	—	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs²
T _{JIT} , 3	Cycle-to-Cycle jitter	_	300	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	—	0.04	0.1	%F _{FIRC}

1. With FIRC regulator enable

2. Startup time is defined as the time between clock enablement and clock availability for system use.

3. FIRC as system clock

Table 30. Fast internal RC Oscillator electrical specifications for S32K14xW series

Symbol	Parameter ¹		Value		Unit
		Min.	Тур.	Max.	1
F _{FIRC}	FIRC target frequency	—	48	—	MHz
ΔF	Frequency deviation across process, voltage, and temperature	_	±0.5	±1.4	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs ²
T _{JIT} , 3	Cycle-to-Cycle jitter	—	300	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	—	0.04	0.1	%F _{FIRC}

1. With FIRC regulator enable

2. Startup time is defined as the time between clock enablement and clock availability for system use.

3. FIRC as system clock

NOTE

Fast internal RC oscillator is compliant with LIN when device is used as a slave node.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 31. Slow internal RC oscillator (SIRC) electrical specifications for S32K1xx series

Symbol	Parameter		Unit		
		Min.	Тур.	Max.	
F _{SIRC}	SIRC target frequency	_	8		MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	_	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time	—	9	12.5	µs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

Table 32. Slow internal RC oscillator (SIRC) electrical specifications for S32K14xW series

Symbol	Parameter		Value		Unit
		Min.	Тур.	Max.	
F _{SIRC}	SIRC target frequency	—	8	—	MHz
ΔF	Frequency deviation across process, voltage, and temperature	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time		9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 33. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter		Value	•		Unit
		Min.	Тур.	M	Max.	
		S32K1xx/ S32K14xW	S32K1xx/ S32K14xW	S32K1xx	S32K14xW	
F _{LPO}	Internal low power oscillator frequency	113	128	139	141	kHz
T _{startup}	Startup Time	_	—	2	0	μs

Symbol	Parameter	Min.	Тур.	м	ax.	Unit		
		S32K1xx/ S32K14xW	S32K1xx/ S32K14xW	S32K1xx	S32K14xW			
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8		1	6	MHz		
F _{SPLL_Input} ²	PLL Input Frequency	8	—	40	40 48			
F _{VCO_CLK}	VCO output frequency	180	—	3	320			
F _{SPLL_CLK}	PLL output frequency	90	—	1	MHz			
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³							
	at F _{VCO_CLK} 180 MHz	—	120	-	_	ps		
	at F _{VCO_CLK} 320 MHz	_	75	-	_	ps		
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (R	MS) ³						
	at F _{VCO_CLK} 180 MHz	_	—	13	50 ⁴	ps		
	at F _{VCO_CLK} 320 MHz	_	—	60	600 ⁴			
D _{UNL}	Lock exit frequency tolerance	± 4.47	—	± 5	%			
T _{SPLL_LOCK}	Lock detector detection time ⁵			150 × 10 ⁻⁶ + 10	75(1/F _{SPLL_REF})	S		

6.2.5 SPLL electrical specifications

Table 34. SPLL electrical specifications

- 1. FSPLL REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.
- 2. F_{SPLL Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG SOSCCFG register of Reference Manual.
- 3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary
- 4. The behavior of the accumulated PLL jitter saturates over 1us.
- 5. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3 Memory and memory interfaces

Flash memory module (FTFC/FTFM) electrical specifications 6.3.1

This section describes the electrical characteristics of the flash memory module.

6.3.1.1 Flash timing specifications — commands Table 35. Flash command timing specifications for S32K14x series

Symbol Description¹ S22K1/2 C22K144 S22K1/6 Т C22K1/10

Symbol	Descrip		332	N 142	33/	21144	332	140	332	K140			
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes	
TUTUK	Read 1 Block execution time	32 KB flash	—		—	_	_		—	—	ms		

Table continues on the next page ...

S32K1xx Data Sheet, Rev. 14, 08/2021

Г

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	K146	S32	2K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
		64 KB flash	_	0.5	—	0.5	—	0.5	—	_		
		128 KB flash	_	_	_	_	—	_	_	_		
		256 KB flash	_	2	_	_	_	_	—	_		
		512 KB flash	_	—	-	1.8	—	2	—	2	1	
t _{rd1sec}	Read 1 Section	2 KB flash	—	75	—	75	—	75	_	75	μs	
	execution time	4 KB flash	—	100	_	100	—	100	—	100		
t _{pgmchk}	Program Check execution time	_	—	95	-	95	-	95	—	100	μs	
t _{pgm8}	Program Phrase execution time	—	90	225	90	225	90	225	90	225	μs	
t _{ersblk}	Erase Flash	32 KB flash	_	—	—	_	—	—	—	_	ms	2
	Block execution time	64 KB flash	30	550	30	550	30	550	—	_	1	
		128 KB flash	—	—	—	—	—	—	—	_		
		256 KB flash	250	2125	_	_	—	—	—	_		
		512 KB flash	—	—	250	4250	250	4250	250	4250		
t _{ersscr}	Erase Flash Sector execution time		12	130	12	130	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)		5	_	5	_	5	—	5	_	ms	
t _{rd1all}	Read 1s All Block execution time		_	2.8	_	2.3	-	5.2	—	8.2	ms	
t _{rdonce}	Read Once execution time	—	-	30	-	30	-	30	-	30	μs	
t _{pgmonce}	Program Once execution time	—	90	—	90	-	90	—	90	-	μs	
t _{ersall}	Erase All Blocks execution time	—	250	2800	400	4900	700	10000	1400	17000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time		—	35	_	35	-	35	-	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time		250	2800	400	4900	700	10000	1400	17000	ms	2
t _{pgmpart}	Program Partition for EEPROM	32 KB EEPROM backup	70	—	70	_	70	—	—	_	ms	3
	execution time	64 KB EEPROM backup	71	-	71	-	71	-	150	-		

Table 35. Flash command timing specifications for S32K14x series (continued)

Symbol	Descrip	tion ¹	S32	K142	S3	2K144	S32	2K146	S32	2K148		
			Тур	Max	Тур	Мах	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function	Control Code 0xFF	0.08	_	0.08		0.08	_	0.08	_	ms	3
	execution time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	0.8	1.2		_		
		48 KB EEPROM backup	1	1.5	1	1.5	1	1.5	_	_		
		64 KB EEPROM backup	1.3	1.9	1.3	1.9	1.3	1.9	1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	_		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	385	1700	_	_	μs	3 [,] 4
		48 KB EEPROM backup	430	1850	430	1850	430	1850	_	-		
		64 KB EEPROM backup	475	2000	475	2000	475	2000	475	4000		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	630	2000	—	-	μs	3 [,] 4
		48 KB EEPROM backup	720	2125	720	2125	720	2125	—	-		
		64 KB EEPROM backup	810	2250	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write execution	1st 32-bit write	200	550	200	550	200	550	200	1100	μs	4,5,6
	time: Time from CCIF clearing (start the write) until CCIF	2nd through Next to Last (Nth-1) 32- bit write	150	550	150	550	150	550	150	550		

Symbol	Descrip	Description ¹		K142	S3	2K144	S32	K146	S32	K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time	_	—	(# of Quick Writes) * 2.0	—	(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

Table 35. Flash command timing specifications for S32K14x series (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred (t_{quickwrClnup}). This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 36. Flash command timing specifications

			S32	K142W	S32	K144W		
Symbol	Descri	ption ⁻¹	Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block	64 KB flash	—	0.8	—	0.8	ms	
	execution time	256 KB flash	_	2.5	—	—		
		512 KB flash	—	—	—	2.6		
t _{rd1sec}	Read 1 Section	2 KB flash	—	200	—	200	μs	
	execution time	4 KB flash	_	220	_	220		
t _{pgmchk}	Program Check execution time	_	—	200	—	200	μs	
t _{pgm8}	Program Phrase execution time	_	150	330	150	330	μs	
t _{ersblk}	Erase Flash Block	64 KB flash	100	1100	100	1100	ms	-1
	execution time	256 KB flash	350	4400	_	—		
		512 KB flash	_	—	700	8600		
t _{ersscr}	Erase Flash Sector execution time	-	20	275	20	275	ms	-1
t _{pgmsec}	Program Section execution time	1 KB flash	7	-	7	-	ms	
t _{rd1all}	Read 1s All Block execution time	-	—	3.5	—	3.5	ms	

			S32	K142W	S32	K144W		
Symbol	Descri	otion ⁻¹	Тур	Max	Тур	Max	Unit	Notes
t _{rdonce}	Read Once execution time		—	40	—	40	μs	
t _{pgmonce}	Program Once execution time	—	150	-	150	-	μs	
t _{ersall}	Erase All Blocks execution time		475	5550	825	9750	ms	-1
t _{vfykey}	Verify Backdoor Access Key execution time	_		45	_	45	μs	
tersallu	Erase All Blocks Unsecure execution time	_	475	5550	825	9750	ms	-1
t _{pgmpart}	Program Partition for EEPROM execution	32 KB EEPROM backup	98	-	98	-	ms	-1
	time	64 KB EEPROM backup	100	-	100	-		
setram	Set FlexRAM	Control Code 0xFF	0.125	0.160	0.125	0.160	ms	-1
	Function execution time	32 KB EEPROM backup	1.0	1.5	1.0	1.5		
		48 KB EEPROM backup	1.2	1.8	1.2	1.8		
		64 KB EEPROM backup	1.4	2.1	1.4	2.1		
t _{eewr32b}	32-bit write to FlexRAM execution	32 KB EEPROM backup	1250	4000	1250	4000	μs	-1-1
	time	48 KB EEPROM backup	1500	4125	1500	4125		
		64 KB EEPROM backup	1700	4250	1700	4250		
quickwr	32-bit Quick Write	1st 32-bit write	300	1400	300	1400	μs	-11-1
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit	2nd through Next to Last (Nth-1) 32- bit write	275	1000	275	1000		
	write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	375	1200	375	1200		
t _{quickwr} Clnup	Quick Write Cleanup execution time			(# of Quick Writes) * 3.6		(# of Quick Writes) * 3.6	ms	-1

Table 36. Flash command timing specifications (continued)

Symbol	Descripti	on ¹	S3	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	_	0.36	—	0.36	ms	
	time	64 KB flash	_	_	—	_		
		128 KB flash	_	1.2	 _	_		
		256 KB flash	—	_	—	2	_	
		512 KB flash	_	_	—	_		
t _{rd1sec}	Read 1 Section	2 KB flash	_	75	—	75	μs	
	execution time	4 KB flash	_	100	—	100	_	
t _{pgmchk}	Program Check execution time		—	100	—	100	μs	
t _{pgm8}	Program Phrase execution time		90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	15	300	15	300	ms	2
	execution time	64 KB flash	—	—	—	-		
		128 KB flash	120	1100	—	—		
		256 KB flash	—	—	250	2125		
		512 KB flash	—	—	—	-		
t _{ersscr}	Erase Flash Sector execution time	_	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1 KB flash)	—	5	-	5	_	ms	
t _{rd1all}	Read 1s All Block execution time		_	1.7		2.8	ms	
t _{rdonce}	Read Once execution time		—	30	—	30	μs	
t _{pgmonce}	Program Once execution time		90	—	90	—	μs	
t _{ersall}	Erase All Blocks execution time	—	150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time		_	35	—	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	—	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71		71	_	ms	3
		64 KB EEPROM backup	—	—	—	—		
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08		0.08	_	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2		

 Table 37. Flash command timing specifications for S32K11x series

Symbol	Descripti	on ¹	S3:	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
		48 KB EEPROM backup	_	_	_	—		
		64 KB EEPROM backup	_	_	_	—		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	—	_	_	—		
		64 KB EEPROM backup	—	_	_	—		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	—	_	_	—		
		64 KB EEPROM backup	—	_	_	—		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3 [,] 4
		48 KB EEPROM backup	—	—	_	—		
		64 KB EEPROM backup	—	—	—	—		
t _{quickwr}	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4,5,6
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
	complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time	_	—	(# of Quick Writes) * 2.0	-	(# of Quick Writes) * 2.0	ms	7

Table 37. Flash command timing specifications for S32K11x series (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.

S32K1xx Data Sheet, Rev. 14, 08/2021

- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,
- assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC/FTFM macro to stop the operation.

6.3.1.2 Reliability specifications Table 38. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program a	and Data F	lash			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	_	_	years	1
n _{nvmcycp}	Cycling endurance	1 K	_	—	cycles	2, 3
	When using FlexMemory feature : Flex	RAM as E	mulated EEP	ROM	•	
t _{nvmretee100}	Data retention up to 100% of write endurance	5	_	_	years	1, 4
t _{nvmretee10}	Data retention up to 10% of write endurance	20	_	_	years	1
n _{nvmwree16}	Write endurance • EEPROM backup to FlexRAM ratio = 16	100 K		_	writes	5, 6, 7
n _{nvmwree256}	EEPROM backup to FlexRAM ratio = 256	1.6 M			writes	

1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.

- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification.
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- 5. FlexMemory write endurance specified for 32-bit writes to FlexRAM and is supported across product temperature specification. Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any emulated EEPROM driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the DFlash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.

Memory and memory interfaces

- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

NXP
Semiconductors

S32K1xx Data Sheet, Rev. 14, 08/2021

FLASH PORT	Sym	Unit						FLA	SH A							FLA	SH B			
					RL	JN ¹					HSR	UN ¹				RUN/HSRUN ²				
QuadSPI Mode					SI	DR					S	DR			SI	DR	DE	DR ³		
				ernal pling		Interna	al DQS			ernal pling		Interna	al DQS			rnal pling	Extern	al DQS		
			Ν	11		AD oback		ernal oback	N	11	P/ Loop	AD back		rnal back	N	1	Extern	al DQS		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах	Min	Max		
				•			Regis	ster Sett	ings						•					
MCR[DDR_EN]		-	(C	()	(C	()	C)	0)	()	-	1		
MCR[DQS_EN]		-	(C	1	1		1	()	1		1	l	0)	-	1		
MCR[SCLKCFG[0]]		-		-	1	1	(C	-	-	1		0)	-			-		
MCR[SCLKCFG[1]]		-		-	1	1	(C		-	1		0			-		-		
MCR[SCLKCFG[2]]		-		-	-	-		-	-	-	-		-				(0		
MCR[SCLKCFG[3]]		-		-	-	-		-	-	-	-		-				(0		
MCR[SCLKCFG[5]]		-	(C	0)	(C	()	C)	0)	0)	-	1		
SMPR[FSPHS]		-	(C	1	1	(C	()	1		0)	0)	(0		
SMPR[FSDLY]		-	()	()	(C	()	C)	0)	()	(0		
SOCCR				-	0)	2	3		-	C)	3	0				-		
[SOCCFG[7:0]]																				
SOCCR[SOCCFG[15:8]]		-		-	-	-		-		-	-		-				3	80		
FLSHCR[TDH]		-	0x	00	0x	00	0x	:00	0x	00	0x	00	0x	00	0x	00	0x	:01		
							Timing	g Param	eters											
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴		
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-		

Table continues on the next page...

Memory and memory interfaces

5

Table 39. QuadSPI electrical specifications (continued)

FLASH PORT	Sym	Unit						FLA	ASH A							FL/	ASH B	
	1				RL	JN ¹					HSF	UN ¹				RUN/	HSRUN ²	2
QuadSPI Mode	1				S	DR					SI	DR			S	DR	DDR ³	
				ernal pling		Intern	al DQS			ernal Ipling		Interna	al DQS			ernal pling	Exterr	nal DQS
			Ν	11		AD oback		ernal oback	1	N1		AD back		ernal oback	1	N1	Exterr	nal DQS
	1		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
SCK Duty Cycle	t _{SDC}	ns	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 0.750	tSCK/2 - 0.750	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 2.5	tSCK/2 + 2.5	tSCK/2 - 2.5	tSCK/2 + 2.5
Data Input Setup Time	t _{IS}	ns	15	-	2.5	-	10	-	14	-	1.6	-	9	-	25	-	2	-
Data Input Hold Time	t _{IH}	ns	0	-	1	-	1	-	0	-	1	-	1	-	0	-	20	-
Data Output Valid Time	t _{ov}	ns	-	4.5	-	4.5	-	4.5	-	4	-	4	-	4	-	10	-	10
Data Output In-Valid Time	t _{IV}	ns	-	5	-	5	-	5	-	5	-	3 ⁵	-	5	-	5	5	-
CS to SCK Time 6	t _{csscк}	ns	5	-	5	-	5	-	5	-	5	-	5	-	10	-	10	-
SCK to CS Time ⁷	t _{SCKCS}	ns	5	-	5	-	5	-	5	-	5	-	5	-	5	-	5	-
Output Load		pf	2	25	2	5	2	25	2	25	2	5	2	25	2	25	2	25

See Reference Manual for details on mode settings 1.

See Reference Manual for details on mode settings 2.

Valid for HyperRAM only
 RWDS(External DQS CLK) frequency

5. For operating frequency \leq 64 Mhz,Output invalid time is 5 ns.

Program register value QuadSPI_FLSHCR[TCSS] = 4`h2 6.

Program register value QuadSPI_FLSHCR[TCSH] = 4`h1

S32K1xx Data Sheet, Rev. 14, 08/2021

Figure 10. QuadSPI input timing (SDR mode) diagram

Figure 11. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 12. QuadSPI input timing (HyperRAM mode) diagram

6.4 Analog modules

- 6.4.1 ADC electrical specifications
- 6.4.1.1 12-bit ADC operating conditions

Table 40. 12-bit ADC operating conditions1

			Min.	Typ. ²	M	ax.		
Symbol	Description	Conditions	S32K1xx/ S32K14xW	S32K1xx/ S32K14xW	S32K1xx	S32K14xW	Unit	Notes
V _{REFH}	ADC reference voltage high		See Voltage and current operating requirements for values	V _{DDA}	operating rec	and current uirements for ues	V	3
V _{REFL}	ADC reference voltage low		See Voltage and current operating requirements for values	0	operating rec	and current uirements for ues	mV	3
V _{ADIN}	Input voltage		V _{REFL}	—	V _R	EFH	V	
R _S	Source impedendance	f _{ADCK} < 4 MHz	—	—	Į	5	kΩ	
R _{SW1}	Channel Selection Switch Impedance		—	0.650	0.7	780	kΩ	
R _{AD}	Sampling Switch Impedance		—	0.155	1	.0	kΩ	
C _{P1}	Pin Capacitance		—	2.1	2	.5	pF	
C _{P2}	Analog Bus Capacitance		_	3 (S32K144) 2 (S32K116)		4	pF	
C _S	Sampling capacitance			5.1 (gain = 0) 7.2 (gain = max)		0) 9.36 (gain nax)	pF	
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	40	MHz	4, 5
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁶ Continuous conversions enabled, subsequent conversion time	46.4	928	11	60	Ksps	7, 8
		ADC hardware averaging set to 32. ⁶ Continuous conversions enabled, subsequent conversion time	1.45	5 29 36.25		.25	Ksps	7, 8
	ADC power consumption		_	1.0	1.	.1 ⁹	pF	

1. All the data mention in this table is only validated in a simulation and granted by NXP design team.

S32K1xx Data Sheet, Rev. 14, 08/2021

55

- 2. Typical values assume V_{DDA} = 5 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω, and C_{AS}=10 nF unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}. To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 4. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 5. ADC conversion will become less reliable above maximum frequency.
- 6. When using ADC hardware averaging, see the *Reference Manual* to determine the most appropriate setting for AVGS.
- 7. Numbers based on the minimum sampling time of 275 ns.
- 8. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'
- 9. Configuration used during the test to obtain this value is:
 - VDD=VDDA=VREFH=2.5 V, 2.7 V, 3 V ,5.5 V, (externally forced)
 - BUS CLK=48 MHz, ADC CLK=48MHz (FIRC Used), Calibration CLK=24MHz, Sample Time =14 Cyc, Averaging=32
 - Resolution= 12 bit
 - Conversion Mode: Continuous Conversion
 - Channel: ADC0_SE1
 - Temperatures: -40C, 25C, 135C

56

ADC electrical specifications

Figure 14. ADC input impedance equivalency diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details
- All accuracy numbers assume the ADC is calibrated with $V_{REFH}=V_{DDA}=V_{DD}$, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.

ADC electrical specifications

Symbol	Description	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage	2.7		3	V	
I _{DDA_ADC}	Supply current per ADC		0.6	—	mA	3
SMPLTS	Sample Time	275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error	—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity	—	±1.0	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		±2.0		LSB ⁵	6, 7, 8, 9

Table 41. 12-bit ADC characteristics (2.7 V to 3 V) (V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) 1

- 1. This table is not applicable to S32K14xW.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω , and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Symbol Description Min. Tvp.¹ Max. Unit Notes S32K1xx/ S32K1xx/ S32K1xx S32K14xW S32K14xW S32K14xW v V_{DDA} Supply voltage 3 3.13 5.5 Supply current per ADC ____ 1 _ mΑ 2 IDDA ADC SMPLTS Sample Time 275 Refer to the ns Reference Manual TUE³ Total unadjusted error LSB⁴ ±4 ±8 5, 6, 7, 8 DNL Differential non-linearity ±0.7 LSB⁴ 5, 6, 7, 8 INL LSB⁴ Integral non-linearity ±1.0 5, 6, 7, 8 _ _

Table 42. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS} =20 Ω , and C_{AS} =10 nF unless otherwise stated.
- 2. The ADC supply current depends on the ADC conversion rate.
- 3. Represents total static error, which includes offset and full scale error.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 7. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 8. All the parameters in the table are given assuming system clock as the clocking source for ADC.

S32K1xx Data Sheet, Rev. 14, 08/2021

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

6.4.2 CMP with 8-bit DAC electrical specifications

Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode ¹		-		μA
	-40 - 125 °C		230	300	
I _{DDLS}	Supply current, Low-speed mode1		_		μA
	-40 - 105 °C	_	6	11	
	-40 - 125 °C		6	13	
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V _{DDA}	V
V _{AIO}	Analog input offset voltage, High-speed mode				mV
	-40 - 125 °C	-25	±1	25	
V _{AIO}	Analog input offset voltage, Low-speed mode				mV
	-40 - 125 °C	-40	±4	40	
t _{DHSB}	Propagation delay, High-speed mode ²				ns
	-40 - 105 °C	_	35	200	
	-40 - 125 °C		35	300	
t _{DLSB}	Propagation delay, Low-speed mode ²				μs
	-40 - 105 °C	_	0.5	2	
	-40 - 125 °C	—	0.5	3	
t _{DHSS}	Propagation delay, High-speed mode ³				ns
	-40 - 105 °C	_	70	400	

Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	-40 - 125 °C	_	70	500	
t _{DLSS}	Propagation delay, Low-speed mode ³				μs
	-40 - 105 °C	_	1	5	
	-40 - 125 °C	_	1	5	
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs
	-40 - 125 ℃	_	1.5	3	
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs
	-40 - 125 ℃	_	10	30	
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV
	-40 - 125 ℃	_	0	_	
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode			1	mV
	-40 - 125 °C	_	19	66	
	Analog comparator hysteresis, Hyst1, Low-speed mode			1	
	-40 - 125 °C	_	15	40	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV
	-40 - 125 °C	-	34	133	
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	23	80	
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode			1	mV
	-40 - 125 °C	_	46	200	
	Analog comparator hysteresis, Hyst3, Low-speed mode			1	
	-40 - 125 °C	_	32	120	
I _{DAC8b}	8-bit DAC current adder (enabled)			!	ļ
	3.3V Reference Voltage	-	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity	-0.75	_	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	— —	_	30	μs

1. Difference at input > 200mV

- 2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 3. Applied \pm (30 mV + 2 × V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- Applied ± (100 mV + V_{HYST0/1/2/3}).
 Calculation method used: Linear Regression Least Square Method
- 6. 1 LSB = $V_{reference}/256$

ADC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode ¹		•	1	μA
	-40 - 125 °C	_	230	300	-
	-40 - 150 °C		230	300	-
I _{DDLS}	Supply current, Low-speed mode ¹				μA
	-40 - 105 °C	_	6	11	-
	-40 - 125 °C		6	13	
	-40 - 150 °C		6	13	
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V _{DDA}	V
V _{AIO}	Analog input offset voltage, High-speed mode				mV
	-40 - 125 °C	-25	±1	25	
	-40 - 150 °C	-50	±1	50	-
V _{AIO}	Analog input offset voltage, Low-speed mode		1	ł	mV
	-40 - 125 °C	-40	±4	40	1
	-40 - 150 °C	-50	±4	50	1
t _{DHSB}	Propagation delay, High-speed mode ²				ns
	-40 - 105 °C	—	35	200	1
	-40 - 125 °C		35	300	1
	-40 - 150 °C		35	400	
t _{DLSB}	Propagation delay, Low-speed mode ²		-		μs
	-40 - 105 °C		0.5	2	
	-40 - 125 °C		0.5	3	
	-40 - 150 °C		0.5	3	
t _{DHSS}	Propagation delay, High-speed mode ³				ns
	-40 - 105 °C		70	400	
	-40 - 125 °C		70	500	
	-40 - 150 °C		70	600	
t _{DLSS}	Propagation delay, Low-speed mode ³				μs
	-40 - 105 °C		1	5	
	-40 - 125 °C	_	1	5	
	-40 - 150 °C	_	1	5	
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs
	-40 - 125 °C	_	1.5	3	
	-40 - 150 °C	_	1.5	3	
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs
	-40 - 125 °C	—	10	30	
	-40 - 150 °C	_	10	30	
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV
	-40 - 125 °C	—	0		
	-40 - 150 °C	—	0	_	

Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series

Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode				mV
	-40 - 125 °C	—	19	66	
	-40 - 150 °C	—	19	90	
	Analog comparator hysteresis, Hyst1, Low-speed mode				
	-40 - 125 °C	—	15	40	
	-40 - 150 °C	—	15	40	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode			1	mV
	-40 - 125 °C	—	34	133	
	-40 - 150 °C		34	186	
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	—	23	80	
	-40 - 150 °C	—	23	80	
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV
	-40 - 125 °C	—	46	200	
	-40 - 150 °C	_	46	280	
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	-40 - 125 °C	—	32	120	
	-40 - 150 °C	_	32	120	
I _{DAC8b}	8-bit DAC current adder (enabled)				
	3.3V Reference Voltage	—	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity				LSB ⁶
	-40 - 125 °C	-0.75	_	0.75]
	-40 - 150 °C	-2	—	2	1
DNL	8-bit DAC differential non-linearity	-0.5	—	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	_	30	μs

1. Difference at input > 200mV

- 2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 3. Applied ± (30 mV + 2 × $V_{HYST0/1/2/3}$ + max. of V_{AIO}) around switch point.
- 4. Applied \pm (100 mV + V_{HYST0/1/2/3}).
- 5. Calculation method used: Linear Regression Least Square Method
- 6. 1 LSB = $V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/ EXTAL or switching pins cross coupling may happen and

S32K1xx Data Sheet, Rev. 14, 08/2021

hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

Figure 16. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

S32K1xx Data Sheet, Rev. 14, 08/2021

Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

Figure 18. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

6.5 Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the Reference Manual.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

- All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds.
- All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1).

Communication modules

Table 46. LPSPI electrical specifications1

	_	•				Run M	Node ²			HSRUN	l Mode ²	2	VLP	R Mode	e (S32K	(1xx)	VLPR	Mode	(S32K1	4xW)	
		Symbo I	Descripti on	Conditions	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0 V	10	3.3 V	10	U
[-	<u>ତ</u> –			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1.
		f _{periph} ' 3, 4	Peripheral	Slave	-	40	-	40	-	56	-	56	-	4	-	4	-	1	-	1	М
		3, 4	Frequency	Master	-	40	-	40	-	56	-	56	-	4	-	4	-	1	-	1	Z
				Master Loopback ⁵	-	40	-	48	-	48	-	48	-	4	-	4	-	1	-	1	1
				Master Loopback(sl ow) ⁶	-	48	-	48	-	48	-	48	-	4	-	4	-	1	-	1	
	1	f _{op}	Frequency	Slave	-	10	-	10	-	14	-	14 ⁷	-	2	-	2	-	0.5	-	0.5	М
			of operation	Master	-	10	-	10	-	14	-	14 ⁷	-	2	-	2	-	0.5	-	0.5	Z
			operation	Master Loopback ⁵	-	20	-	12	-	24	-	12	-	2	-	2	-	0.5	-	0.5]
				Master Loopback(sl ow) ⁶	-	12	-	12	-	12	-	12	-	2	-	2	-	0.5	-	0.5	
	2	t _{SPSCK}	SPSCK	Slave	100	-	100	-	72	-	72	-	500	-	500	-	-	2000	-	2000	n
			period	Master	100	-	100	-	72	-	72	-	500	-	500	-	-	2000	-	2000	1
				Master Loopback ⁵	50	-	83	-	42	-	83	-	500	-	500	-	-	2000	-	2000	
				Master Loopback(sl ow) ⁶	83	-	83	-	83	-	83	-	500	-	500	-	-	2000	-	2000	
	3	t _{Lead} 8	Enable lead time (PCS to SPSCK delay)	Slave	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	n

:	r H									su									su						su			
(WX	0	Мах	1							I	-								2	r+2\	/XOS	ЧS	}		1			
VLPR Mode (S32K14xW)	3.3 V IO	Min		91	⊧-4	,*t _{perip}	(I+X	DSSD	Ч)	1		S	i L L	_yd	^{inəq} 1*	(I+X	ossa	(PC	2	r-2/)	SCK	IS			55	145		
Mode (0	Мах	,							1	-								2	/2+1	/XOS6	ЧS						
VLPR	5.0 V IO	Min		91	₽-4	t _{perip}	(I+X	DSSD	Ч)			g	1 L	_yd	ineq1*	(I+1)	ossa	(PC	2	r-2\)	SCK	IS			55	145		
(1xx)	3.3 V IO	Мах	,							ı	•									S+5	BSCK/	ıst			•	•		
e (S32K	3.3	Min		-20	.udi	ı∍q1*(۲	SCK+	SSO4)	ı		0	g -'	ydi	ıəd1*(⊧+sc	СКЪС	S)		S-5	ызск/	sţ			18	78		
VLPR Mode (S32K1xx)	5.0 V IO	Max	ı							·	-									<u>9</u> +2	-JSCK	ISt			1	•		
VLP	5.0	Min		-20	.ydi	ı∍q1*(۲	SCK+	SSO4)	ı		0	g -'	ydi	^{ıəd} 1∗(⊧+sc	СКЬС	S)		2-5	ызск/	sţ			18	72		
	3.3 V IO	Мах								-	•									6+3	- BSCK	ıst				-		page
I Mode ²	3.3	Min		-52	.ydi	ı∍q1*(۲	SCK+	SSO4)	-		g	2	ydi	^{ıəd} ì∗(⊧+sc	СКРС	S)		2-3	PSCK/	sţ			5	37 ¹¹	32 <mark>12</mark>	he next
HSRUN	5.0 V IO	Мах	ı								•									6+3	- BSCK	ıst						Table continues on the next page.
	5.0	Min		-25	.udi	1)*t _{per}	+XO	PCS5)	-		S	2	udi	^{ıəd} 1∗(⊧+sc	СКЪС	S)		2-3	,ызск	sţ			3	26		continu
	3.3 V IO	Мах								ı	-									6+3	- BSCK	ISt						Table
Mode ²	3.3	Min		-55	.ydį.	ı∍q1*(۲	+XOS	SSO4)	ı		S	- S	ydi	ı∍dţ*(⊧+sc	СКРС	S)		5-3	коск/	sţ			5	38		
Run	5.0 V IO	Мах	ı							ı	•									5+3	-SCK	ıst				•		
	5.0	Min		-55	.ydi	1)*t _{per}	+XO	PCS5)			S	- 2	ydi	^{ıəd} ì∗(⊧+sc	СКЪ	S)		2-3	ызск	sţ			ო	29		
	Conditions		Master	Master Loopback ⁵	Motor	Intaster Loopback(sl	(MO			Slave	Master	Master	Loopback	Master	Loopback(sl	- (MO			Slave	Master	Master Loopback ⁵		Master Loonback(sl	ow) <mark>e</mark>	Slave	Master		
	Descripti on				1					_	time (Atter								Clock(SPS CK) high or low time (SPSCK duty cycle)		<u> </u>	time(input	10	I				
0	qwʎ	I S							c	tLag ⁹								twspsc K ¹⁰		tsu								
	unN	I								4									ى ب				9					

67

Communication modules

Table 46. LPSPI electrical specifications1 (continued)

_	0			Run Mode ² HSRUN Mode ² VLPR Mode (S32K1xx) onditions 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO						(1xx)	VLPR	Mode	(S32K1	4xW)						
Num	Symbo I	Descripti on	Conditions	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0 V	10	3.3 V	10	Ui
2	<u>(</u> 0 –			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1 "
			Master Loopback ⁵	7	-	8	-	5	-	7	-	20	-	20	-	60	-	60	-	
			Master Loopback(sl ow) ⁶	8	-	10	-	7	-	9	-	20	-	20	-	61	-	61	-	
7	t _{HI}	Data hold	Slave	3	-	3	-	3	-	3	-	14	-	14	-	27	-	27	-	ns
		time(input s)	Master	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	1
		3)	Master Loopback ⁵	3	-	3	-	2	-	3	-	11	-	11	-	26	-	26	-	
			Master Loopback(sl ow) ⁶	3	-	3	-	3	-	3	-	12	-	12	-	20	-	20	-	
8	ta	Slave access time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	-	180	-	180	ns
9	t _{dis}	Slave MISO (SOUT) disable time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	-	180	-	180	ns
10	t _v	Data valid (after SPSCK	Slave	-	30	-	39	-	26	-	36 ¹¹ 31 ¹²	-	92	-	96	-	190	-	190	ns
		edge)	Master	-	12	-	16	-	11	-	15	-	47	-	48	-	113	-	113	-
			Master Loopback ⁵	-	12	-	16	-	11	-	15	-	47	-	48	-	112	-	112	
			Master Loopback(sl ow) ⁶	-	8	-	10	-	7	-	9	-	44	-	44	-	99	-	99	
11	t _{HO}	Data hold	Slave	4	-	4	-	4	-	4	-	4	-	4	-	4	-	4	-	ns
		time(outpu ts)	Master	-15	-	-22	-	-15	-	-23	-	-22	-	-29	-	-30	-	-30	-	1

Table continues on the next page...

83

Table 46. LPSPI electrical specifications1 (continued)

Γ	_	Q				Run I	Mode ²			HSRUN	I Mode ²	2	VLP	R Mode	e (S32K	(1xx)	VLPR	Mode	(S32K14	4xW)	
	unu Num	Symbo I	Descripti on	Conditions	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0 V	10	3.3 V	10	Un it
		<u>.</u> –			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
				Master Loopback ⁵	-10	-	-14	-	-10	-	-14	-	-14	-	-19	-	-19	-	-19	-	
				Master Loopback(sl ow) ⁶	-15	-	-22	-	-15	-	-22	-	-21	-	-27	-	-30	-	-30	-	
	12	t _{RI/FI}	Rise/Fall	Slave	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	ns
			time input	Master	-		-		-		-		-		-		-	1	-	1	
				Master Loopback ⁵	-		-		-		-		-		-		-	-	-		
				Master Loopback(sl ow) ⁶	-		-		-		-		-		-		-		-		
	13	t _{RO/FO}	Rise/Fall	Slave	-	25	-	25	-	25	-	25	-	25	-	25	-	25	-	25	ns
			time	Master	-		-		-		-		-		-		-	1	-	1	
			output	Master Loopback ⁵	-		-		-		-		-		-		-	-	-		
				Master Loopback(sl ow) ⁶	-		-		-		-		-		-		-		-		

1. Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.

2. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.

3. f_{periph} = LPSPI peripheral clock

4. $t_{periph} = 1/f_{periph}$

5. Master Loopback mode - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.

6. Master Loopback (slow) - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0.

7. This is the maximum operating frequency (f_{op}) for LPSPI0 with GPIO-HD PAD type only. Otherwise, the maximum operating frequency (f_{op}) is 12 Mhz.

8. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.

9. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.

10. While selecting odd dividers, ensure Duty Cycle is meeting this parameter.

11. Maximum operating frequency (f_{op}) is 12 MHz irrespective of PAD type and LPSPI instance.

12. Applicable for LPSPI0 only with GPIO-HD PAD type, with maximum operating frequency (fop) as 14 MHz.

Communication modules

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 20. LPSPI master mode timing (CPHA = 1)

Communication modules

Notes:

1. The bus is driven but may not be equal to the valid serial data being sent.

Notes: 1. The bus is driven but may not be equal to the valid serial data being sent

Figure 22. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

```
Communication modules
```

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the Reference Manual.

6.5.5 SAI electrical specifications

The following table describes the SAI electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.97	3.6	V
S1	SAI_MCLK cycle time	40	_	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	_	ns
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period
S5	SAI_RXD input setup before SAI_BCLK	28	_	ns
S6	SAI_RXD input hold after SAI_BCLK	0	_	ns
S7	SAI_BCLK to SAI_TXD output valid	_	8	ns
S8	SAI_BCLK to SAI_TXD output invalid	-2	_	ns
S9	SAI_FS input setup before SAI_BCLK	28	_	ns
S10	SAI_FS input hold after SAI_BCLK	0	_	ns
S11	SAI_BCLK to SAI_FS output valid	_	8	ns
S12	SAI_BCLK to SAI_FS output invalid	-2	_	ns

Table 47. Master mode timing specifications
Communication modules

Figure 23. SAI Timing — Master modes

Symbol	Description	Min.	Max.	Unit
—	Operating voltage	2.97	3.6	V
S13	SAI_BCLK cycle time (input)	80	_	ns
S14 ¹	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S15	SAI_RXD input setup before SAI_BCLK	8	-	ns
S16	SAI_RXD input hold after SAI_BCLK	2	-	ns
S17	SAI_BCLK to SAI_TXD output valid		28	ns
S18	SAI_BCLK to SAI_TXD output invalid	0	_	ns
S19	SAI_FS input setup before SAI_BCLK	8	-	ns
S20	SAI_FS input hold after SAI_BCLK	2	_	ns
S21	SAI_BCLK to SAI_FS output valid	_	28	ns
S22	SAI_BCLK to SAI_FS output invalid	0	—	ns

Table 48. Slave mode timing specifications

1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.

Communication modules

Figure 24. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	_	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
—	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 49. MII signal switching specifications

Communication modules

Figure 25. MII receive diagram

Figure 26. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 50. RMII signal switching specifications	
--	--

Symbol	Description	Min.	Max.	Unit
	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	—	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	—	ns

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	2	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

Figure 27. RMII receive diagram

The following table describes the MDIO electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- MDIO pin must have external Pull-up.

Table 51.	MDIO	timing	specifications
-----------	------	--------	----------------

Symbol	Description	Min.	Max.	Unit
—	MDC Clock Frequency	_	2.5	MHz

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit
MDC1	MDC pulse width high	40%	60%	MDC period
MDC2	MDC pulse width low	40%	60%	MDC period
MDC3	MDIO (input) to MDC rising edge setup	25	—	ns
MDC4	MDIO (input) to MDC rising edge hold	0	—	ns
MDC5	MDC falling edge to MDIO output valid (maximum propagation delay)		25	ns
MDC6	MDC falling edge to MDIO output invalid (minimum propagation delay)	-10		ns

Table 51. MDIO timing specifications (continued)

6.5.7 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

78

Symbo I	Description		Run	Mode			HSRU	N Mode		VLP	R Mode	(S32k	(1xx)		VLPR (S32K			Uni
		5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	
		Min.	Max.	Min.	Max.	Min.	Max.											
S1	SWD_CLK frequency of operation	-	25	-	25	-	25	-	25	-	10	-	10	-	1	-	1	MHz
S2	SWD_CLK cycle period	1/S1	-	1/S1	-	1/S1	-	ns										
S3	SWD_CLK clock pulse width	S2/2 - 5	S2/2 + 5	S2/2-5	S2/2+5	S2/2-5	S2/2+5	ns										
S4	SWD_CLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	4	-	4	-	4	-	4	-	16	-	16	-	30	-	30	-	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	3	-	3	-	3	-	3	-	10	-	10	-	19	-	19	-	ns
S11	SWD_CLK high to SWD_DIO data valid	-	28	-	38	-	28	-	38	-	70	-	77	-	180	-	180	ns
S12	SWD_CLK high to SWD_DIO high-Z	-	28	-	38	-	28	-	38	-	70	-	77	-	180	-	180	ns
S13	SWD_CLK high to SWD_DIO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	ns

S32K1xx Data Sheet, Rev. 14, 08/2021

Debug modules

Figure 30. Serial wire clock input timing

Figure 31. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the ETM Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

NOTE

ETM trace is supported only on S32K148.

Debug modules

	Symbol	Description	F	UN Mode	9	HSRU	N Mode	VLPR Mode	Unit
—	Fsys	System frequency	80	48	40	112	80	4	MHz
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
spg	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

Table 53. ETM Trace specifications

Figure 32. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

NXP	
Semiconductors	

S32K1xx
Data
Sheet,
Rev.
14, 0
8/2021

Symb	Description		Run	Mode			HSRU	N Mode			PR Mode	e (S32K	1xx)	VLP	R Mode	(S32K1	14xW)	Uni
ol		5.0	0 V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	5.0	V IO	1
		Min.	Max.	Min.	Max.	Min	Max	Min	Max	1								
JI	TCLK frequency of operative	ation								•								MH:
	Boundary Scan	-	20	-	20	-	20	-	20	-	10	-	10	-	1	-	1	1
	JTAG	-	20	-	20	-	20	-	20	-	10	-	10	-	1	-	1	1
J2	TCLK cycle period	1/JI	-	1/JI	-	1/J1	-	1/J1	-	ns								
J3	TCLK clock pulse width					1			•									ns
	Boundary Scan	2	2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	1
	JTAG	J2/2 -	J2/2 +	J2/2 -	J2/2 +	J2/2 -	J2/2 +	J2/2 -	J2/2 +									
J4	TCLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	ns
J5	Boundary scan input data setup time to TCLK rise	5	-	5	-	5	-	5	-	15	-	15	-	23	-	23	-	ns
J6	Boundary scan input data hold time after TCLK rise	5	-	5	-	5	-	5	-	8	-	8	-	20	-	20	-	ns
J7	TCLK low to boundary scan output data valid	-	28	-	32	-	28	-	32	-	80	-	80	-	184	-	184	ns
J8	TCLK low to boundary scan output data invalid	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	
J9	TCLK low to boundary scan output high-Z	-	28	-	32	-	28	-	32	-	80	-	80	-	184	-	184	ns
J10	TMS, TDI input data setup time to TCLK rise	3	-	3	-	3	-	3	-	15	-	15	-	23	-	23	-	ns
J11	TMS, TDI input data hold time after TCLK rise	2	-	2	-	2	-	2	-	8	-	8	-	20	-	20	-	ns
J12	TCLK low to TDO data valid	-	28	-	32	-	28	-	32	-	80	-	80	-	184	-	184	ns
J13	TCLK low to TDO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	ns

Table 54. JTAG electrical specifications

Table continues on the next page...

Debug modules

Symb Description		Run Mode		HSRUN Mode			VLPR Mode (S32K1xx)				VLPR Mode (S32K14xW)				Unit			
ol		5.0) V IO	3.3	V IO	5.0 V	/ 10	3.3	V IO	5.0	V IO	3.3	V 10	5.0	V 10	5.0	V IO	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min	Max	Min	Max	
J14	TCLK low to TDO high- Z	-	28	-	32	-	28	-	32	-	80	-	80	-	184	-	184	ns

Debug modules

Figure 33. Test clock input timing

Figure 34. Boundary scan (JTAG) timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package

Rating	Conditions Symbol Package Values (in °C/W)					(in °C/W)										
				S32K116	S32K118	S32K142	S32K142 W	S32K144	S32K144 W	S32K146	S32K148					
Thermal resistance, Junction to	Single layer board (1s)	R_{\thetaJA}	32	93	NA	NA	NA	NA	NA	NA	NA					
Ambient (Natural Convection) ^{1, 2}			48	79	71	70	69	69	69	NA	NA					
			64	NA	62	61	60	61	60	59	NA					
			100	NA	NA	53	NA	52	NA	51	46					
Thermal resistance, Junction to Ambient (Natural Convection) ¹			144	NA	NA	NA	NA	NA	NA	51	44					
			176	NA	NA	NA	NA	NA	NA	NA	42					
	Two layer	R _{θJA}	32	50	NA	NA	NA	NA	NA	NA	NA					
	board (1s1p)		48	58	50	49	48	48	48	NA	NA					
	(151)		64	NA	46	45	45	45	45	44	NA					
			100	NA	NA	42	NA	42	NA	40	36					
			144	NA	NA	NA	NA	NA	NA	44	37					
			176	NA	NA	NA	NA	NA	NA	NA	36					
Thermal resistance, Junction to	Four layer	$R_{\theta JA}$	32	32	NA	NA	NA	NA	NA	NA	NA					
Ambient (Natural Convection) ^{1, 2}	board (2s2p)	board	48	55	47	46	45	45	45	NA	NA					
	(2320)		64	NA	44	43	42	43	42	41	NA					
			100	NA	NA	40	NA	40	NA	39	34					
				ŀ	F				144	NA	NA	NA	NA	NA	NA	42
			176	NA	NA	NA	NA	NA	NA	NA	35					
Thermal resistance, Junction to	Single layer	R _{0JMA}	32	77	NA	NA	NA	NA	NA	NA	NA					
Ambient (@200 ft/min) ^{1, 3}	board (1s)		48	66	58	57	56	57	56	NA	NA					
			64	NA	50	49	49	49	49	48	NA					
			100	NA	NA	43	NA	42	NA	41	37					
			144	NA	NA	NA	NA	NA	NA	42	36					
			176	NA	NA	NA	NA	NA	NA	NA	34					
Thermal resistance, Junction to	Two layer	R _{0JMA}	32	43	NA	NA	NA	NA	NA	NA	NA					
Ambient (@200 ft/min) ¹	board		48	51	43	42	41	41	41	NA	NA					
	(1s1p)		64	NA	39	38	38	38	38	37	NA					

Rating	Conditions	Symbol	Package				Values	(in °C/W)			
				S32K116	S32K118	S32K142	S32K142 W	S32K144	S32K144 W	S32K146	S32K148
			100	NA	NA	35	NA	35	NA	34	30
			144	NA	NA	NA	NA	NA	NA	37	31
			176	NA	NA	NA	NA	NA	NA	NA	30
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Four layer	R _{0JMA}	32	26	NA	NA	NA	NA	NA	NA	NA
	board (2s2p)		48	48	41	40	39	39	39	NA	NA
	(2329)		64	NA	37	36	36	36	36	35	NA
			100	NA	NA	34	NA	34	NA	33	28
			144	NA	NA	NA	NA	NA	NA	36	30
			176	NA	NA	NA	NA	NA	NA	NA	29
Thermal resistance, Junction to Board ⁴		R _{θJB}	32	11	NA	NA	NA	NA	NA	NA	NA
			48	33	24	23	22	23	22	NA	NA
			64	NA	26	25	24	25	24	23	NA
			100	NA	NA	25	NA	25	NA	24	19
				144	NA	NA	NA	NA	NA	NA	30
			176	NA	NA	NA	NA	NA	NA	NA	24
Thermal resistance, Junction to	_	R _{θJC}	32	NA	NA	NA	NA	NA	NA	NA	NA
Case ⁵			48	23	19	17	16	17	16	NA	NA
			64	NA	14	13	12	12	12	11	NA
			100	NA	NA	13	NA	12	NA	11	9
			144	NA	NA	NA	NA	NA	NA	12	9
			176	NA	NA	NA	NA	NA	NA	NA	9
Thermal resistance, Junction to	_	$R_{\theta JCBottom}$	32	1		1		NA			
Case (Bottom) ⁶			48				N	A			
			64								
			100								
		-	144	1							

Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package(continued)

Thermal attributes

Table continues on the next page...

86

NXP Semiconductors

Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package
(continued)

Rating	Conditions	Symbol	Package				Values	(in °C/W)			
				S32K116	S32K118	S32K142	S32K142 W	S32K144	S32K144 W	S32K146	S32K148
			176								
Thermal resistance, Junction to	Natural	Ψ_{JT}	32	1	NA	NA	NA	NA	NA	NA	NA
Package Top ⁷	Convection		48	4	2	2	2	2	2	NA	NA
			64	NA	2	2	2	2	2	2	NA
			100	NA	NA	2	NA	2	NA	2	1
			144	NA	NA	NA	NA	NA	NA	2	1
			176	NA	NA	NA	NA	NA	NA	NA	1

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.

7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 56. Thermal characteristics for the 100 MAPBGA package

Rating	Conditions	Symbol		Values		Unit
			S32K146	S32K144	S32K148	
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	$R_{ extsf{ heta}JA}$	57.2	61.0	52.5	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2, 3}	Four layer board (2s2p)	R _{θJA}	32.1	35.6	27.5	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3	Single layer board (1s)	R _{0JMA}	44.1	46.6	39.0	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Two layer board (2s2p)	R _{θJMA}	27.2	30.9	22.8	°C/W
Thermal resistance, Junction to Board ⁴	—	$R_{\theta JB}$	15.3	18.9	11.2	°C/W
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	10.2	14.2	7.5	°C/W
Thermal resistance, Junction to Package Top outside center ⁶	—	ΨJT	0.2	0.4	0.2	°C/W
Thermal resistance, Junction to Package Bottom outside center ⁷	—	Ψ _{JB}	12.2	15.9	18.3	°C/W

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

S32K1xx Data Sheet,

Rev.

14,

, 08/2021

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number	Manufacture Code
32-pin QFN	SOT617-3 ¹	98ASA01350D
48-pin LQFP	SOT313-3	98ASH00962A
64-pin LQFP	SOT1699-1	98ASS23234W
100-pin LQFP	SOT407-3	98ASS23208W
100-pin MAPBGA	SOT1569-1	98ASA00802D
144-pin LQFP	SOT486-2	98ASS23177W
176-pin LQFP	SOT506-2	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated description, max and min values for I_{INJSUM} Updated VIN_TRANSIENT In table: Voltage and current operating requirements : Renamed V_{SUP_OFF} Updated footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Removed V_{INA} and V_{IN} Added footnotes in table Table 7 Updated footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed Id/MHz for S32K142 and S32K148 Updated numbers for S32K142 and S32K148 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration," with spreadsheet attachment: 'S32K1xx_Power_Modes_Master_configuration_sheet' In table: DC electrical specifications at 5.0 V Range : Added footnote to High drive port pins In table: DC electrical specifications at 5.0 V Range :

Table 57. Revision History

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 Added footnotes V_{ih} Input Buffer High Voltage and V_{ih} Input Buffer Low
		Voltage
		Updated table: AC electrical specifications at 3.3 V range
		Updated table: AC electrical specifications at 5 V range
		In table: Standard input pin capacitance Added facture to Normal run mode (S22)(14x corice)
		 Added footnote to Normal run mode (S32K14x series) Removed note from 1M ohms Feedback Resistor in figure Oscillator
		connections scheme
		In table: External System Oscillator electrical specifications
		Updated typical of I _{DDOSC} Supply current — low-gain mode (low-power
		mode) (HGO=0) 1 for 4 and 8 MHz
		Removed rows for I _{lk ext} EXTAL/XTAL impedence High-frequency, low-
		gain mode (low-power mode) and high-frequency, high-gain mode and
		V _{EXTAL}
		 Updated Typ. of R_S low-gain mode
		 Updated description of R_F, R_S, and V_{PP}
		 Removed footnote from R_F Feedback resistor
		 Updated footnote for C₁ C₂ and R_F
		In table: Table 28
		Removed mention of high-frequency Added LCO 0.1 information
		 Added HGO 0, 1 information In table: Fast internal RC Oscillator electrical specifications
		Updated F _{FIRC}
		 Updated description of ΔF
		 Updated typ and max values of T_{JIT} cycle-to-cycle jitter and T_{JIT} Long
		term jitter over 1000 cycles
		 Added footnotes to T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter
		over 1000 cycles
		 Updated naming convention of I_{DDFIRC} Supply current
		 Added footnote to I_{DDFIRC} Supply current
		Added footnote to column Parameter
		In table: Slow internal RC oscillator (SIRC) electrical specifications
		Removed V _{DD} Supply current in 2 MHz Mode Demoved featurets and undeted description of A F
		• Removed footnote and updated description of ΔF
		 Updated footnote to F_{SIRC} and I_{DDSIRC} In table: SPLL electrical specifications
		Added row for F _{SPLL_REF} PLL Reference
		Updated naming convention throughout the table
		Updated the max value of T _{SPLL_LOCK} Lock detector detection time
		In table: Flash timing specifications — commands
		Added footnotes:
		 All command times assumes
		 For all EEPROM Emulation terms
		 'First time' EERAM writes after a POR
		Removed footnote 'Assumes 25 MHz or'
		Updated Max of t _{eewr32bers} Added persenters t
		Added parameters t _{quickwr} and t _{quickwrClnup}
		 In table: Reliability specifications Removed Typ. values for all parameters
		 Removed Typ. values for all parameters Removed footnote 'Typical values represent '
		 Added footnote 'Any other EEE driver usage '
		Updated QuadSPI AC specifications
		Removed topic: Reliability, Safety and Security modules
		• In table: 12-bit ADC operating conditions

Table 57. Revision History

• In table: 12-bit ADC operating conditions

Updated V_{DDA}

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 Updated values for V_{REFH} and V_{REFL} to add refernce to the section "voltage and current operating requirments" for Min and Max valaues Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I_{DLS} Supply current, Low-speed mode Updated Typ. of I_{DLSS} Propagation delay, Low-speed mode Updated Typ. of I_{DLSS} Propagation delay, High-speed mode Updated footnote Updated footnote Updated tootnote Updated tootnote Updated footnote Updated footnote Updated section: LPSPI electrical specifications Added section: Ethernet AC specifications Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 55 : Updated numbers for S32K142 and S32K148 Updated able: Table 56 : Updated numbers for S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 3 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' In Flash timing specifications — commands updated Max. value of t_{vfykey} to 33 µs
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Selecting orderable part number, added reference to attacheme <i>S32K_Part_Numbers.xlsx</i>. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table 57. Revision History (continued)

Rev. No.	Date	Substantial Changes
Rev. No.	Date	Substantial Changes • Updated note 'All the limits defined ' • Updated parameter 'I _{INJPAD_DC_ABS} ', 'V _{IN_DC} ', I _{INJSUM_DC_ABS} . • In Table 3, • Updated parameter I _{INJPAD_DC_OP} and I _{INJSUM_DC_OP} . • In Table 8, updated TBDs for V _{LVR_HYST} , V _{LVD_HYST} , and _{VLVW_HYST} • In Power mode transition operating behaviors, • Added VLPR → VLPS • Added VLPS → VLPR • Updated TBDs for VLVS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup • In Table 13, updated the specifications for S32K144. • Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. • In Table 25, removed C _{IN_A} . • In Table 27, • Updated specificatins for g _{mXOSC} . • Removed I _{DDOSC} • In Table 29, • Added parameter ΔF125. • Removed I _{DDFIRC} • In Table 31, • Added parameter ΔF125. • Removed I _{DDFIRC} • In Table 33, removed I _{LPO} • Updated section: Flash memory module (FTFC/FTFM) electrical specifications • In section: 12-bit ADC operating conditions, • Updated TBDs for I _{DDA_ADC} and TUE in Table 41 • Updated TBDs for I _{DDA_ADC} and TUE in Table 42
5	06 Dec 2017	 Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings : Added note 'Unless otherwise ' Added parameter 'Added note 'T_{ramp_MCU}' Updated footnote for 'T_{ramp}' In Voltage and current operating requirements : Added footnote 'V_{DD} and V_{DDA} must be shorted ' against parameter 'V_{DD}-V_{DDA}' Updated footnote 'V_{DD} and V_{DDA} must be shorted' In Power and ground pins Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. Updated footnote 'V_{DD} and V_{DDA} must be shorted'

Table 57. Revision History (continued)

Table continues on the next page...

Table 57.	Revision	History
-----------	----------	---------

Rev. No.	Date	Substantial Changes
		 Added footnote 'For S32K11x – FIRC/SOSC/FIRC/LPO; For S32K14x
		 – FIRC/SOSC/FIRC/LPO/SPLL' to 'VLPS Mode: All clock sources
		disabled
		Updated numbers for:
		• VLPR \rightarrow VLPS
		VLPS → VLPR
		 'RUN → Compute operation' RUN → VLPS
		RUN → VLPS
		In Power consumption :
		 Updated specs for S32K142, S32K144, and S32K148
		Updated footnote 'Typical current numbers are indicative'
		Updated footnote 'The S32K148 data'
		 Removed footnote 'Above S32K148 data is preliminary targets only'
		 Added new table 'Power consumption at 3.3 V'
		In General AC specifications :
		 Updated max value and footnote of WFRST
		• Updated symbol for not filtered pulse to 'WNFRST', updated min value,
		removed max. value, and added footnote
		Fixed naming conventions to align with DS in DC electrical specifications at
		3.3 V Range and DC electrical specifications at 5.0 V Range
		Updated specs for AC electrical specifications at 3.3 V range and AC
		electrical specifications at 5 V range
		In Device clock specifications :
		Updated f _{BUS} to 48 for 11x
		Added footnote to f _{BUS} for 14x
		In External System Oscillator frequency specifications : Added appear for S20K11x
		 Added specs for S32K11x Updated 't_{dc extal}' for S32K14x
		 Added footnote 'Frequecies below ' to 'f_{ec_extal}' and 't_{dc_extal}'
		 Splitted Flash timing specifications — commands for S32K14x and S32K11x
		Updated Flash timing specifications — commands for S32K14x
		In Reliability specifications :
		 Added footnote 'Data retention period ' for 'tnvmretp1k' and
		'tnvmretee'
		 Minor update in footnote for 'nnvmwree16' 'nnvmwree256'
		In QuadSPI AC specifications :
		 Updated 'MCR[SCLKCFG[5]]' value to 0
		Updated 'Data Input Setup Time' HSRUN Internal DQS PAD Loopback
		value to 1.6
		Updated 'Data Input Setup Time' DDR External DQS min. value to 2
		Updated 'Data Input Hold Time' DDR External DQS min. value to 20
		Upadted figure 'QuadSPI output timing (SDR mode) diagram' and Output SPI input timing (Upror DAM mode) diagram!
		'QuadSPI input timing (HyperRAM mode) diagram'
		 In 12-bit ADC electrical characteristics : Added note 'On reduced pin packages where '
		 Removed max. value of 'I_{DDA ADC}'
		Added note 'Due to triple '
		 In 12-bit ADC operating conditions, removed parameter 'ΔV_{DDA}'
		In CMP with 8-bit DAC electrical specifications :
		Updated Typ. and Max. values of 'I _{DDLS} '
		Upadted Typ. value of 't _{DHSB} '
		• Updated Typ. value of 'V _{HYST1} ', 'V _{HYST2} ', and 'V _{HYST3} '
		In LPSPI electrical specifications :
		 Updated 'f_{periph}' and 'f_{op}', and 't_{SPSCK}'
I		

Table 57.	Revision History (continued)	
-----------	------------------------------	--

Rev. No.	Date	Substantial Changes
		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Crdering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated fortical updates In figure: S32K1xx product series comparison : Editorial updates Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the fistt paragraph.

Rev. No.	Date	Substantial Changes
		 Fixed the typo in R_{SW1} In LPSPI electrical specifications : Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics : Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{BJC} for 32 QFN package Added 'R_{BJCBottom}'
8	18 June 2018	 In attachement 'S32K1xx_Power_Modes _Configuration': Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison : Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'Ambient Operation Temperature' row Updated 'Ambient Operation Temperature' row Updated formation :

Rev. No.	Date	Substantial Changes
		 Updated specs for T_{JIT} Cycle-to-Cycle jitter to 300 ps In QuadSPI AC specifications : Updated specs for T_{iv} Data Output In-Valid Time In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid area In CMP with 8-bit DAC electrical specifications : Removed '(VAIO)' from decription of V_{HYST0} In LPSPI electrical specifications : Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'
9	18 Sep 2018	 In attachment 'S32K1xx_Power_Modes _Configuration': Added separate sheet for S32K14x and S32K11x devices Renamed VLPS (Peripherals Enabled) to VLPS (LPTMR enabled) Removed Note "Technical information" In Features: Updated Clock interfaces for '4 – 40 MHz fast external oscillator (SOSC)' and 'Real Time Counter' Added 'Up to 20 MHz TCLK and 25 MHz SWD_CLK' In Absolute maximum ratings : Updated footnote 3 '60 seconds lifetime ' Updated tile of table Thermal operating characteristics In Ordering information : Updated 'Temperature' Updated 'Temperature' Updated 'Wafer Fab and Mask revision identifier' In Power consumption : Renamed 'VLPS Peripheral enabled' to 'LPTMR enabled' Added IDDs for S32K118 for 85 °C, 105 °C and 125 °C Updated IDDs for S32K118 for 85 °C, 105 °C and 125 °C Updated IDDs for VLPR Peripherals enabled use case 2 for S32K116 Updated IDDs for VLPR Peripherals enabled use case 2 for S32K116 Updated IDDs and added footnotes in table 'VLPS additional use-case power consumption at typical conditions' In General AC specifications : Updated footnote to R_S Renamed V_{pp} to V_{pp_XTAL} and updated the description accordingly Added V_{soscop} Updated equation 'gm_crit = 4' in footnote 1 In External System Oscillator frequency specifications : Added footnote "For an ideal clock of 40 MHz, if permitted" to f_{osc_hi} max. In Fast internal RC Oscillator (FIRC) electrical specifications : Updated note "Fast internal"
10	09 May 2019	 In Notes: Added note 'Technical information for the S32K148 ' In attachment 'S32K1xx_Orderable_Part_Number_List': Added ISELED PN Added PN for new package offering (48-pin LQFP S32K142; 48-pin LQFP S32K144; 100-pin LQFP S32K148) Added NFC PN Added UA as S32K148 Standard PN Updated Standard Base Feature Offer In figure 'S32K1xx product series comparison' :

Table 57. Revision History (continued)

Table continues on the next page ...

Table 57. Revision History (con

Rev. No.	Date	Substantial Changes
		 Added 48-pin LQFP for S32K142 and S32K144 Added 100-pin LQFP for S32K148, along with footnote In Ordering information : Updated 'Ordering option' Updated note 2 In Thermal characteristics : Added values for 48-pin LQFP for S32K142 and S32K144 Added values for 100-pin LQFP for S32K148
11	27 June 2019	In Notes: Removed note 'Technical information for the S32K148 '
12	04 Feb 2020	 In Notes: Added note: 'Technical information for' Added S32K14xW information throughout Removed "Under development" from the footnote number 6 in Figure 3. Updated Trace electrical specifications to clarify that the section applies only for ETM Trace and is supported only by S32K148. In Table 28, added a new footnote from f_{osc_hi} Max entry. Updated Figure 21 for number 8. In Reliability specifications, t_{nvmretee} is changed to t_{nvmretee100}, and added a new row for the parameter t_{nvmretee10}. And footnotes are updated in this topic.
13	05 April 2020	 In LVR, LVD and POR operating requirements, Updated table title for S32K14xW series Updated values for V_{LVR} for S32K14xW series In Absolute maximum ratings, updated T_J for S32K14xW series In Thermal operating characteristics, updated T_J for S32K14xW series In External System Oscillator electrical specifications, added note 'Minimum value is shown as a reference only ' to V_{pp_EXTAL}
14	10 August 2021	 In Table 45, fixed broken footnotes in symbols I_{DDLS} and DNL. In Table 9, Changed V_{LVW} Min from 4.19 to 4.17. Changed values for V_{LVR}. Updated values for V_{LVR} for S32K14xW series. In ESD and latch-up protection characteristics, changed the name of the section, added footnotes in the table and removed the "Notes" column from the table. In SPLL electrical specifications , moved the Typical timings to Maximum for J_{ACC_SPLL}. In SPLL electrical specifications , added footnote to Maximum values of J_{ACC_SPLL}. In Table 8 and Table 9, added footnote " In 3.3 V range, the VLVW is always set since supply remains below VLVW range. Hence PMC.LVDSC2[LVWIE] should remain cleared while device operates in 3.3 V range". In External System Oscillator frequency specifications updated the footnotes for symobls f_{osc_hii}, fec_extal and f_{dc_extal}. Updated Table 56. In Table 13, removed TBD. In Table 13 and Table 20, added EXTAL pin PTB6 parameter and values for IIN. In Table 13 and Table 14, removed TBD for S32K14xW In Table 13 and Table 14, removed TBD for S32K14xW In Table 26 removed the f_{ERCLK} entry. In Table 35, updated the Typical and Max values. In 12-bit ADC operating conditions : Updated Typ. and Max values for symobls C_{P1}, C_{P2}, C_S, R_{SW1} and R_{AD}.

Rev. No.	Date	Substantial Changes
		 Added ADC power consumption.
		 Added footnote "All the data mentionby NXP design team". In Table 17 and Table 19 updated the Typ. and Max values for Input leakage current (per pin)

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015–2021 NXP B.V.

Document Number S32K1XX Revision 14, 08/2021

